
Universidade do Minho

Escola de Engenharia

João Nuno Cardoso Gonçalves de Abreu

Development of DNA sequence

classifiers based on deep learning

October, 2022

Universidade do Minho

Escola de Engenharia

João Nuno Cardoso Gonçalves de Abreu

Development of DNA sequence

classifiers based on deep learning

Master’s Dissertation

Master’s in Informatics Engineering

Work supervised by

Miguel Rocha

Óscar Dias

October, 2022

ii

COPYRIGHT AND TERMS OF USE OF THIS WORK BY A THIRD PARTY

This is academic work that can be used by third parties as long as internationally accepted rules and good

practices regarding copyright and related rights are respected.

Accordingly, this work may be used under the license provided below.

If the user needs permission to make use of the work under conditions not provided for in the indicated

licensing, they should contact the author through the RepositóriUM of Universidade do Minho.

License granted to the users of this work

Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional

CC BY-NC-SA 4.0

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt

iii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the Universidade do Minho.

,

(Location) (Date)

(João Nuno Cardoso Gonçalves de Abreu)

Acknowledgements

To begin with, I would like to thank my supervisor, Prof. Miguel Rocha for giving me this opportunity and

for all the support he provided whenever I needed it. Then, I would also like to thank Ana Marta Sequeira

for the continuous support and guidance throughout the whole dissertation, as well as the patience for all

my questions. This project was only possible with their help, and I’m forever grateful for it.

I would also like to thank the colleagues from OmniumAI, namely Fernando Cruz, João Capela Ribeiro

and Miguel Barros for the huge help regarding the new technologies I had to learn and the challenges I

had to face.

Then, I want to thank my parents for providing me all the opportunities and everything I have ever

asked for. Thank you for all the support and encouragement throughout my whole life, but especially this

last year.

I also want to thank my friends who were present in my life during these last 5 years of university,

especially Hugo, Tiago, and Duarte. Thank you all for the amazing moments we have spent together and

for being the best friends I have ever had.

Lastly, I would like to thank all the family, friends, and colleagues I did not mention here, but who were

present in my life during these last few years. Thank you all for the support and encouragement you have

provided me.

iv

Abstract

Development of DNA sequence classifiers based on deep learning

Deoxyribonucleic acid (DNA) is a biological macromolecule whose primary function is to store an individual’s

genetic information. Because of breakthroughs in sequencing technology, the number of DNA sequences

is now growing at an exponential rate. The assignment of a function to these sequences is a great obstacle

in Bioinformatics, and current methods rely on homologies, a solution that is slow and less accurate.

Machine learning (ML) has been widely employed as it is a relevant tool for processing huge amounts of

data by learning on its own without explicit programming. Using ML, it is now possible to speed up and

automatically classify DNA sequences into existing categories with the objective of learning their functions.

However, building a machine learning classifier of biological sequences is a tough challenge due to the

lack of numerical properties in the sequence that the model requires. Therefore, it is still necessary to apply

some pre-processing techniques so that the sequences are properly represented for the model. These

techniques include feature extraction and feature selection, and they are the most difficult components

because sequences lack explicit features. Deep learning models have recently been developed that not

only extract features from input automatically, but also improve the prediction and classification of DNA

sequences.

The main goal of this project is to create a tool that can automatically classify DNA sequences using

machine and deep learning models and algorithms, followed by its integration into ProPythia, a Python

package developed by the host group. Automated ML classifiers will also be developed to integrate in

OmniumAI software platforms. Transcription factor annotation and essential gene determination will be

used as case studies for the platform validation. With this study, it is intended to encourage the use of

such technologies to develop new tools that can manage vast volumes of biological data, thus boosting

DNA prediction understanding.

Keywords: DNA, DNA Sequence Classification, Machine Learning, Deep Learning

v

Resumo

Desenvolvimento de classificadores de sequências de ADN baseado em deep

learning

O ácido desoxirribonucleico (ADN) é uma macromolécula biológica cuja principal função é armazenar a

informação genética de um indivíduo. Devido aos avanços na tecnologia de sequenciamento, o número

dessas sequências está a crescer a uma taxa exponencial. A atribuição de funções a estas sequências

é um grande obstáculo na Bioinformática, e os métodos atuais usam homologias, uma solução lenta e

pouco precisa. Machine learning tem sido bastante utilizado, pois é uma ferramenta capaz de processar

grandes quantidades de dados aprendendo por conta própria sem programação explícita. Desta maneira,

é possível acelerar e classificar automaticamente as sequências de ADN em categorias existentes com o

objetivo de aprender as suas funções.

No entanto, construir um classificador de machine learning de sequências biológicas é um grande

desafio devido à falta de propriedades numéricas na sequência que o modelo exige. É necessário aplicar

algumas técnicas de pré-processamento para que as sequências sejam devidamente representadas para o

modelo. Essas técnicas incluem extração e seleção de características, e são os componentes mais difíceis

porque as sequências carecem de características explícitas. Modelos de deep learning foram desenvolvidos

recentemente que não só extraem características dos dados automaticamente, como também melhoram

a previsão e classificação de sequências de ADN.

O principal objetivo deste projeto é criar uma ferramenta capaz de classificar automaticamente sequên-

cias de ADN usando modelos e algoritmos de machine e deep learning, seguido da sua integração no

ProPythia, um Python package desenvolvido pelo grupo anfitrião. Classificadores automáticos de machine

learning também serão desenvolvidos para integração em plataformas de software OmniumAI. A determi-

nação do fator de transcrição e de genes essenciais serão utilizados como casos de estudo para validação

da plataforma. Com este estudo, pretende-se incentivar o uso de tais tecnologias para desenvolver novas

ferramentas que consigam lidar com grandes volumes de dados, permitindo avanços na área de previsão

de ADN.

Palavras-chave: ADN, Classificação de sequências de ADN, Machine Learning, Deep Learning

vi

vii

Contents

List of Figures x

List of Tables xii

Glossary xiii

Acronyms xiv

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Research Objectives . 2

1.3 Document Structure . 2

2 Machine and Deep Learning 4

2.1 Unsupervised learning . 6

2.2 Supervised learning . 8

2.2.1 Workflow . 9

2.2.2 Models and algorithms . 13

2.2.3 Artificial neural networks . 17

2.3 Deep Learning . 19

2.3.1 Training phase . 19

2.3.2 Challenges of deep neural networks . 21

2.3.3 Deep learning architectures . 22

2.4 Automated machine learning . 27

2.5 Python libraries for machine and deep learning 28

3 Machine and Deep Learning in DNA sequence classification 30

3.1 DNA sequences . 30

3.2 DNA sequence classification - Traditional Machine Learning 31

3.3 DNA sequence classification - Deep Learning . 33

viii

CONTENTS

3.4 Relevant previous work on DNA classification . 34

4 Development and Implementation 38

4.1 Development Strategy . 38

4.2 Setting up the Data . 39

4.2.1 Descriptors . 39

4.2.2 Encoders . 51

4.3 Classifiers Implementation . 53

4.3.1 Models . 53

4.3.2 Hyperparameter Tuning . 55

5 Software Integration 57

5.1 ProPythia . 57

5.2 OMNIA . 59

6 Validation/Case studies 62

6.1 The Datasets . 62

6.2 Data Collection and Transformation . 63

6.3 Optimal Class Weight . 66

6.4 Results . 68

6.5 Results Reproducibility . 70

7 Conclusion 73

7.1 Summary of the work . 73

7.2 Discussion on the main results . 74

7.3 Future Work . 75

Bibliography 77

Appendices 90

A Detailed Results 90

ix

List of Figures

1 The volume of data created, captured, copied, and consumed from 2010 to 2025 [8] . . . 4

2 Difference between Traditional Programming and Machine Learning. Adapted from [12] . . 5

3 Clustering vs Dimensionality Reduction. Adapted from [17] 7

4 Visual representation of K-means clustering. Adapted from [20] 7

5 Principal Component Analysis application on 2D space data. Adapted from [21] 8

6 Classification vs Regression. Adapted from [24] . 9

7 Example of confusion matrix . 12

8 Example of confusion matrix with the prediction outcomes, relative to the b class 12

9 Visual representation of Linear Regression. Adapted from [30] 13

10 Visual representation of K-Nearest Neighbors. Adapted from [32] 14

11 Visual representation of Support Vector Machines. Adapted from [34] 15

12 Visual representation of Decision Tree . 16

13 Random Forest structure. Adapted from [23] . 16

14 Artificial neuron. Adapted from [37] . 17

15 Artificial Neural Network . 18

16 Artificial Neural Network vs Deep Neural Network . 19

17 Convolutional Neural Network architecture. Adapted from [53] 23

18 Convolution operation with a kernel size of 3 × 3, stride of 1, and no padding. Adapted

from [53] . 24

19 Max pooling with a filter size of 2 × 2, no padding, and a stride of 2. Adapted from [53] . . 24

20 Recurrent Neural Network architecture. Adapted from [56] 25

21 Autoencoders architecture. Adapted from [52] . 27

22 Machine learning pipeline with AutoML. Adapted from [60] 28

23 Correlations of dinucleotides along a DNA sequence. Adapted from [91] 48

24 Models and their feature extraction methods. 53

25 MLP architecture. 53

26 CNN architecture. 54

x

LIST OF FIGURES

27 LSTM architecture. 54

28 GRU architecture. 54

29 CNN-LSTM architecture. 55

30 CNN-GRU architecture. 55

31 Schematic representation of the modules in ProPythia [4]. 58

32 Implemented workflow in ProPythia for Deep Learning DNA classifications. 58

33 Integration of implemented modules in ProPythia. 59

34 OMNIA overview before implementations. 59

35 Modules integration in OMNIA. 61

36 OMNIA overview after implementations. 61

37 Sequence length and its occurrence in the positive dataset. 64

38 Sequence length and its occurrence in the negative dataset. 65

39 Sequence length and its occurrence after removing sequences bigger than 0.1e6. 65

xi

List of Tables

1 Machine Learning concepts [13] . 6

2 Types of data. Adapted from [23] . 10

3 Classification evaluation metrics . 12

4 Deep Learning concepts [13, 44] . 20

5 Overview of packages with DNA descriptors . 32

6 DNA sequence encoding methods [2] . 33

7 Overview of DNA classification’s previous work . 36

8 List of implemented descriptors. 40

9 List of 38 physicochemical properties of dinucleotides in DNA. [102] 42

10 List of 12 physicochemical properties of trinucleotides in DNA. [102] 44

11 Original numerical values for the six DNA dinucleotide physical structures [91] 49

12 The normalized values for the six DNA dinucleotide physical structures [91] 50

13 Cluster of nucleotides based on chemical properties [109] 52

14 Ray Tune’s search space. 56

15 Case studies. 62

16 Statistics about the positive and negative datasets. 66

17 Results of different weights in the essential genes dataset. 67

18 Statistics about the k-mer one-hot encoding on the essential genes dataset using the CNN

model. 69

19 Accuracy results on Primer dataset. 70

20 Accuracy results on Essential Genes dataset. 70

21 Results on Essential Genes dataset with different seeds. 72

22 Results on Primer dataset. 90

23 Results on Essential Genes dataset. 93

xii

Glossary

genome An organism’s complete set of genetic instructions. Each genome contains all of the

information needed to build that organism and allow it to grow and develop.

xiii

Acronyms

A Adenine

ANF Accumulated Nucleotide Frequency

ANN Artificial Neural Network

AT Adenine-Thymine

AutoML Automated Machine Learning

BPTT Backpropagation through time

C Cytosine

CGR Chaos Game Representation

CKSNAP Composition of K-spaced Nucleic Acid Pairs

CNN Convolutional Neural Network

DAC Dinucleotide-based Auto Covariance

DACC Dinucleotide-based Auto-Cross Covariance

DBS DNA-binding domains

DCC Dinucleotide-based Cross Covariance

DL Deep Learning

DNA Deoxyribonucleic acid

DNC Di-Nucleotide Composition

DNN Deep Neural Network

DT Decision Tree

FCGR Frequency Chaos Game Representation

FN False Negative

FP False Positive

xiv

ACRONYMS

G Guanine

GC Guanine-Cytosine

GPU Graphics Processing Unit

GRU Gated Recurrent Unit

KNN K-Nearest Neighbors

LgR Logistic Regression

LR Linear Regression

LSTM Long Short-Term Memory

MAE Mean absolute error

MAPE Mean absolute percentage error

ML Machine Learning

MLE Maximum Likelihood Estimation

MLP Multilayer Perceptron

MSE Mean Squared Error

NAC Nucleic Acid Composition

NLP Natural Language Processing

PCA Principal Component Analysis

PseACC Pseudo Amino Acid Composition

PseDNC Pseudo Dinucleotide Composition

PseKNC Pseudo K-Tupler Composition

PseNAC Pseudo Nucleic Acid Composition

RCKmer Reverse Compliment Kmer

RF Random Forest

RNA Ribonucleic acid

RNN Recurrent Neural Network

xv

ACRONYMS

SGD Stochastic Gradient Descent

SVM Support Vector Machines

T Thymine

TAC Trinucleotide-based Auto Covariance

TACC Trinucleotide-based Auto-Cross Covariance

TCC Trinucleotide-based Cross Covariance

TF Transcription Factor

TN True Negative

TNC Tri-Nucleotide Composition

TP True Positive

xvi

C
h
a
p
t
e
r

1
Introduction

1.1 Context and Motivation

Biomedical data has grown at an exponential rate in recent years, requiring the use of a variety of machine

learning approaches to handle new issues in biology and clinical research. Machine learning methods are

often integrated with bioinformatics methodologies, as well as curated databases and biological networks,

to improve training and validation, find the most interpretable features, and enable feature and model

research [1].

In organisms, DNA is a biomacromolecule. It holds life’s genetic information and controls biological

growth as well as the proper functioning of life’s functions. Machine learning is now frequently utilized in

sequence data analysis, and it has a wide range of applications in terms of enhancing data processing

capacities and providing useful biological data [2].

The assignment of a function to a sequence representing a part of a DNA molecule is a core prob-

lem in Bioinformatics, extremely important for biomedical research. Current solutions involve the use of

homologies, inferred by sequence similarity, i.e., classifying new sequences based on known functions

in sequences with a high degree of similarity. Deep neural networks are an alternative that can automat-

ically learn and comprehend informative sequence representations to get a better understanding of the

regulatory code that governs gene expression [3].

There is already a platform, developed within the Biosystems group at CEB/ U. Minho, devoted

to the classification of peptides/proteins sequences using machine learning and deep learning called

ProPythia [4]. One of the objectives of this thesis will be the integration of a tool to support DNA sequence

classifiers on the mentioned platform.

1

CHAPTER 1. INTRODUCTION

1.2 Research Objectives

The main aim of this work is to develop an automatic classification system for DNA sequences using

machine and deep learning algorithms, expecting performance gains in terms of response time to annotate

large numbers of sequences (e.g., complete genomes), as well as the accuracy of the results obtained.

In detail, the work will address the following scientific/technological objectives:

• Review relevant literature and existing tools regarding deep learning methods and their applications

in sequence classification.

• Develop and compare data pre-processing techniques and understand the impact of different

methods on the classifying performance of machine and deep learning models.

• Develop a tool to support machine and deep learning models for DNA sequence classification to

integrate in ProPythia.

• Develop automated machine learning (AutoML) classifiers for DNA sequences, which will be inte-

grated into OmniumAI software platforms.

• Validate the developed tool and platform with case studies in the areas of biotechnology and health,

e.g., transcription factor annotation and essential genes determination [5–7].

• Write the master thesis.

1.3 Document Structure

This thesis is divided into seven chapters, each of which is briefly described as follows:

• Chapter 1: Overview of the work’s subject, as well as the motivation and key objectives.

• Chapter 2: Theoretical concepts of machine and deep learning, as well as their objectives, algo-

rithms, workflows, and architectures.

• Chapter 3: Introduction of DNA and DNA sequence classification topics. Applications of machine

and deep learning in DNA sequence classification, as well as relevant previous work.

• Chapter 4: Decisions and methods for implementing the proposed work, including details on the

feature extraction and classification models used.

• Chapter 5: Integration of the developed tool into ProPythia and OmniumAI software platforms.

2

CHAPTER 1. INTRODUCTION

• Chapter 6: A summary of the case study datasets, how they were acquired, and the tool’s effective-

ness on them.

• Chapter 7: Brief summary of the dissertation, followed by a discussion of the goals, which are

presented in this chapter, and the results from the previous chapter. Also provided at the end are

some suggestions for future work.

3

C
h
a
p
t
e
r

2
Machine and Deep Learning

The modern world is overflowing with data. It has reached a stage where humans can no longer regulate it

since the rate of analysis is far slower than the continuous growth of data. According to Figure 1, this rapid

growth is not expected to stop anytime soon, so tools and technologies are needed to make the process

of making sense of data more efficient.

Figure 1: The volume of data created, captured, copied, and consumed from 2010 to 2025 [8]

4

CHAPTER 2. MACHINE AND DEEP LEARNING

Machine Learning (ML), which is a subfield of artificial intelligence and computer science, is a promise

that humans will be able to extract useful information from all these data. It focuses on using data and

algorithms to imitate the way humans learn while improving accuracy [9].

For a long time, one of the major differences between humans and computers has been that humans

tend to naturally improve their approach to solving problems by learning from their mistakes and trying to

fix them. Traditional computer programs are unable to improve their behavior since they do not consider

the outcome of their job [10].

This topic is addressed by ML, which entails the development of computer systems that can learn and

improve their performance by accumulating more data and experience. A. Samuel was the first scientist to

design a self-learning program in 1952 when he developed a program that improved at playing checkers

as the number of games increased [10, 11].

ML relies solely on the availability of the data and does not need any rule-based programming. There

is a distinction to be made between traditional programming and ML. In traditional programming, data

and programs are sent as inputs to the machine, and it produces an output, whereas in ML, data and

outputs are inputs to the system, and the machine’s output is the program that has been learned to make

predictions on unknown examples. The primary difference between traditional programming and ML’s

approach is represented in Figure 2.

Prediction

Data

Handcrafted model

Computer Result

Learning

Sample Data

Expected result

Computer Model

Traditional modeling

Machine learning

Result
Prediction

New data

Model

Computer

Figure 2: Difference between Traditional Programming and Machine Learning. Adapted from [12]

To understand better the concepts of ML, Table 1 provides a few important terminologies.

5

CHAPTER 2. MACHINE AND DEEP LEARNING

Table 1: Machine Learning concepts [13]

Concept Description

Dataset

Collection of data. In tabular data, each column represents a

feature and each row represents a given record of the data set

in question. Instead of tables, datasets can also consist of a

collection of files.

Model
Representation of a ML system after it has learnt

from the training data.

Feature Measurable characteristic of the dataset.

Feature Vector Multiple features are used as an input to the ML model.

Training Procedure for obtaining appropriate values for model weights and bias (parameters).

Parameter Model variable that is self-taught by the ML system.

Prediction
Once the ML model is complete, it can be fed input data

to accurately predict.

Label Value that the ML model must predict.

Overfitting
Making a model that is so similar to the training data that it

fails to generate accurate predictions on new data.

Underfitting The model fails to detect the underlying trend in the input data.

The two primary categories of ML algorithms are supervised and unsupervised learning. Other cat-

egories include semi-supervised learning and reinforcement learning. The following sections provide an

overview of the two primary categories, describing their properties and explaining their algorithms. The

supervised learning section is more detailed as it is more relevant to the purpose of this thesis.

2.1 Unsupervised learning

In unsupervised learning, algorithms are used when the data used in the training process is not categorized.

Although they cannot figure out the proper output, they can infer a function to identify trends or hidden

structures from unlabeled data in the dataset [14]. The two most common unsupervised categories are

clustering and dimensionality reduction. Clustering involves grouping input variables with similar qualities,

and it is applied in targetted marketing problems and recommender systems [15]. Dimensionality reduction

algorithms are techniques that reduce the number of input variables in a dataset, and they are used for

big data visualization and structure discovery [16].

In unsupervised ML, several algorithms and computing approaches are utilized. The following are some

of the most popular clustering and dimensionality reduction algorithms: K-means clustering and Principal

Component Analysis (PCA) [18].

6

CHAPTER 2. MACHINE AND DEEP LEARNING

x2

x1

Clustering

x2

x1

Dimensionality Reduction

Figure 3: Clustering vs Dimensionality Reduction. Adapted from [17]

K-means clustering is a clustering ML technique in which data points are divided into K groups. The

data points nearest to a certain centroid will be clustered together. Smaller groupings with more granularity

are indicated by a higher K value, whereas bigger groupings with less granularity are indicated by a lower

K value [19]. Figure 4 provides a visual representation of K-means clustering, with K = 3.

Figure 4: Visual representation of K-means clustering. Adapted from [20]

PCA is a dimensionality reduction approach that uses feature extraction to eliminate redundancies

and compress datasets, while retaining as much of the information contained in the original data as

possible [19]. Working with too many variables can be difficult for ML since there is a chance of overfitting,

a lack of appropriate data for each variable, and a degree of correlation between each variable and the

output [18]. In order to do this, PCA projects the data into a lower-dimensional subspace that mostly retains

the variance between the data points.. Figure 5 depicts an example of PCA’s influence on 2-dimensional

space data.

The green line was created through mathematical optimization in order to maximize the variance

between the data points as much as possible along that line. This line is referred to as the first principal

component. Since a dimension has been lost to separate them, the points on the line are closer to each

other than they were in the original 2D environment. However, in many circumstances, the simplification

7

CHAPTER 2. MACHINE AND DEEP LEARNING

Figure 5: Principal Component Analysis application on 2D space data. Adapted from [21]

in dimensionality compensates the loss of information. When moving to higher dimensions, it will most

likely be necessary to use multiple principal components since the variance described by one principle

component will not be enough. Principal components are vectors that form a 90-degree angle between

each other (orthogonal vectors), and are independent in a way that the second principal component does

not overlap with the variance explained by the first. The first principal component will capture the majority

of the variance; the second will catch the second-largest portion of the variance left unexplained by the

first, and so on.

2.2 Supervised learning

Supervised learning is a ML paradigm for obtaining knowledge about a system’s input-output relationship

from a set of paired input-output training examples [22], with classification and regression being the two

most common supervised categories. In classification, a class label is predicted for a given sample. In

other words, it maps a function from input variables to output variables as target, label or categories [23].

In addition, there are multiple classification problems, such as binary classification, which refers to tasks

with two class labels, such as ”true and false”, multiclass classification, which refers to classification tasks

having more than two class labels, andmulti-label classification when an example is associated with multiple

classes or labels. On the other hand, regression contains approaches for predicting a continuous output

variable based on the value of one or more predictor variables. The key difference between classification

and regression is that the former predicts labels for certain classes while the latter permits the prediction of

a continuous variable. A clearer distinction between classification and regression is illustrated in Figure 6.

8

CHAPTER 2. MACHINE AND DEEP LEARNING

Classification Regression

Figure 6: Classification vs Regression. Adapted from [24]

While there are several supervised learning algorithms available, most of them follow the same funda-

mental steps for producing a predictor model. The next section describes the general workflow process of

building a supervised machine learning project.

2.2.1 Workflow

ML workflows specify which phases of a ML project are implemented. While these measures are widely

acknowledged as best practices, there is still potential for improvement.

When developing a ML workflow, the first step is to define the project before determining the best

working strategy or attempting to fit the model into a predetermined workflow. Instead, a flexible workflow

should be created to start small and work its way up to a production-ready solution.

The steps taken during a ML implementation are defined by workflows. ML workflows differ depending

on the project, but they usually consist of seven steps.

1. Data Gathering It is the practice of acquiring and analyzing data from a variety of sources. Data

must be collected and kept in a form that makes sense for the challenge at hand in order to be used

to build a viable machine learning model. This phase is crucial because the quality and quantity of

data collected will directly affect how accurate the predictive model is. Publicly available datasets

are frequently the best source of data, and websites like Kaggle provide an enormous quantity of

huge datasets. Working with these selected datasets reduces the time and effort required to begin

a ML project.

Structured, semi-structured, and unstructured data are examples of different types of data, and

Table 2 provides details about each one of them.

2. Data pre-processing Cleaning, validating, and converting data into a usable dataset, are all part

of pre-processing. This may be a simple operation if the data was collected from a single source. If

9

CHAPTER 2. MACHINE AND DEEP LEARNING

Table 2: Types of data. Adapted from [23]

Data type Description Examples

Structured

Well-defined structure, well-organized

and accessible. Often stored in a tabular

manner such as relational databases.

names, addresses,

credit card numbers

Unstructured

Since there is no pre-defined format or

organization, it is significantly more

difficult to acquire, handle, and analyze

data that is largely text and multimedia.

emails, PDF files,

audio files,

videos, photos

Semi-structured
Contains organizational qualities that

make it easier to examine.

HTML, XML,

JSON documents

not, the data format must match between the different sources and be equally credible without any

potential duplicates. The majority of real-world data is disorganized; examples include:

• Missing data: when it is not created continuously or when there are technical issues with

the application.

• Noisy data: also known as outliers, this can be caused by human error (manually obtaining

data) or a technical issue with the device at the time of data collection.

• Inconsistent data: This type of data may be gathered as a result of human error (mistakes

in names or values) or data duplication.

And there are types of raw data too, including:

• Numeric: height, weight, age, IQ.

• Categorical: race, sex, nationality.

• Ordinal: low/medium/high, education level (”high school”, ”BS”, ”MS”, ”PhD”).

However, there is an important aspect of ML models as they can only handle numeric features. As

a result, all types of data must be converted into numeric features. This process of transforming

raw data, such as images or text, into suitable modelling features is called feature extraction.

Most of the time, datasets have an excessive number of features that are not required for the

predictive model. In fact, removing irrelevant features and keeping the sufficient and essential ones

can help reduce the ML model training time, as well as reduce overfit and improve accuracy. This

filtering process is called feature selection and is usually performed after feature extraction.

3. Splitting the Data It is usual to divide a dataset into two portions for creating ML models: training

and testing. The training set is used to estimate the model’s parameters. The accuracy of the model

10

CHAPTER 2. MACHINE AND DEEP LEARNING

is then tested using the test dataset. This dataset splitting process is done to prevent overfitting. If

the entire dataset was used for training, then the model would overfit the data, meaning it would

fail to generate accurate predictions on unseen data [25].

The simplest and most popular approach for dividing such a dataset is to randomly sample a

portion of it. For example, 80% of the dataset’s rows can be randomly selected for training, while

the remaining 20% can be utilized for testing [25].

It’s also typical to save a part of the training set for validation purposes. The validation set may

be used to fine-tune the model’s performance by selecting hyper-parameters (constant parameter

whose value is determined before the learning process) and regularization parameters [25].

4. Building the model The key goal now is to choose the type of model which fits better the desired

problem.

Data can be any of the types listed above (Table 2), and they can differ from one application to

the next in the real world. Therefore, different types of ML approaches can be used to evaluate a

specific problem field and extract insights or usable knowledge from the data to construct real-world

intelligent systems. One of the models described in Section 2.2.2 that best suits the problem’s goal

should be chosen.

5. Training and evaluation The objective now is to use the pre-processed data to train the best-

performing chosen model, followed by its performance evaluation. The training set will be used to

train the model and then the model outputs will be compared with the unseen values. To evaluate

these outputs, multiple metrics are used which can vary depending on the problem.

For binary classification problems, the most commonly metrics include: confusion matrices, ac-

curacy, recall, precision and f1-score [26]. These are based on True Positive (TP), True Negative

(TN), False Positive (FP) and False Negative (FN) values, which are the four possible predictions

outcomes for a classification problem. TP outcomes are correct predictions of the positive class,

while TN still are correct predictions but of the negative class. FP outcomes are incorrect predictions

of the positive class, while FN still are incorrect predictions but of the negative class.

The confusion matrices are tables which rows represent the real classes and the columns represent

the predicted classes. So, for each class, the table shows how many predictions were and were not

correct. Figure 7 shows an example of a confusion matrix and Figure 8 illustrates how the the TP,

TN, FP and FN values are perceived within the table.

After defining TP, TN, FP and FN values, the other classification metrics are simple to calculate.

Table 3 explains each classification metric and how each one is calculated.

For regression problems, the most commonly metrics include: Mean Squared Error (MSE), Mean

absolute error (MAE) and Mean absolute percentage error (MAPE) [27]. They are calculated using

11

CHAPTER 2. MACHINE AND DEEP LEARNING

Actual
classifcation

a

b

c

d

Classes

Total

6

3

1

1

a

11

0

9

0

2

b

11

1

1

10

1

c

13

2

1

2

12

d

17

Predicted classification

9

14

13

16

Total

52

Figure 7: Example of confusion matrix

Actual
classifcation

a

b

c

d

Classes

TN

FN

TN

TN

a

FP

TP

FP

FP

b

TN

FN

TN

TN

c

TN

FN

TN

TN

d

Predicted classification

Figure 8: Example of confusion matrix with the prediction outcomes, relative to the b class

Table 3: Classification evaluation metrics

Metric Description Equation

Accuracy Fraction of correct predictions.
)% +)#

)% +)# + �% + �#

Recall Proportion of actual positives correctly identified
)%

)% + �#

Precision Proportion of positive identifications actually correct
)%

)% + �%

F1-score Harmonic mean between precision and recall. 2 × ?A428B8>= × A420;;
?A428B8>= + A420;;

the difference between the predicted and the actual value. MSE measures the average squared

difference between the predicted values and the real value. Over all occurrences in the test set,

MAE determines the mean of the absolute values of the individual prediction errors and MAPE

determines the mean of the absolute percentage errors of the individual prediction errors.

Since the objective is to build a model that can generalize the information on unseen data, it is

12

CHAPTER 2. MACHINE AND DEEP LEARNING

also important to measure the generalization performance of the model. This can be achieved by

applying the k-fold cross-validation method, which uses k different partitions of the dataset to train

and test a model on different iterations. Of the k portions, k-1 portions are used as training data

and the remaining portion is the validation data to test the model. This process is repeated until all

partitions are tested, meaning it has k iterations until it ends.

6. Hyperparameter Tuning It is the process of selecting a set of ideal hyperparameters for a learning

algorithm. A hyperparameter is a model parameter whose value is determined prior to the start of

the learning process, since it cannot be learned during the training process.

7. Prediction After obtaining an acceptable performance, guided by the evaluation phase, the next

and final step is to put the developed model to work. After all this effort, the benefit of ML is

recognized at this step. The benefit of ML is that it enables one to obtain an accurate prediction by

feeding input data to the model rather than relying on human judgment and manual rules.

2.2.2 Models and algorithms

In supervised ML, several algorithms and computing approaches are utilized. The following are some of

the most popular classification and regression algorithms: Linear Regression (LR), Logistic Regression

(LgR), K-Nearest Neighbors (KNN), Support Vector Machines (SVM), Decision Tree (DT), Random Forest

(RF) and Artificial Neural Network (ANN) [18, 28].

LR is the most popular method of regression analysis, which assumes that the dependent variable

(variable to be predicted) and the independent variable (base for the variable to be predicted) have a linear

relationship. Linear regression creates a model for the best fit line between two variables. The outcome

of interest must be a continuous variable in order to be appropriate for LR [29]. Figure 9 shows how the

model (red line) is created by utilizing training data (blue points) with known labels (y axis) to fit the points

as exactly as possible by minimizing the value of a given loss function (usually MSE).

Figure 9: Visual representation of Linear Regression. Adapted from [30]

13

CHAPTER 2. MACHINE AND DEEP LEARNING

LgR is similar to LR but it is used for classification problems. To model a binary output variable, logistic

regression employs the logistic function given below (Eq 1). Logistic regression’s range is constrained to 0

and 1, which is the main difference between it and linear regression. In contrast to linear regression, logistic

regression does not need a linear relationship between the input and output variables. Also unlike linear

regression, which employs MSE as the loss function, logistic regression utilizes a conditional probability loss

function called Maximum Likelihood Estimation (MLE). If the probability is greater than 0.5, the predictions

will be labeled as class 0. Otherwise, you will be allocated to class 1 [31]. By default, logistic regression

cannot be utilized for multi-class classification problems, which have more than two class labels. However,

it is possible to adapt logistic regression to solve multi-class classification problems. One approach example

is to divide the multi-class classification issue into several binary classification problems and apply a typical

logistic regression model to each subproblem.

5 (G) = 1
1 + 4−G (1)

The KNN algorithm is a classification/regression technique that classifies data points based on their

proximity and correlation with other data [28]. This technique assumes that data points that are comparable

can be located close together. As a result, it attempts to determine the distance between data points, which

is commonly done using Euclidean distance, and then assigns a category based on the most common

category or average. Depending on the value of K (the number of nearest neighbors that will participate in

the voting process), different results can be obtained. In Figure 10, the test sample (green circle) should

fall into one of two categories: squares or triangles. If K = 3, then only the three nearest neighbors to the

test sample will participate in the voting process. In this example, it is assigned to the triangles class since

the nearest neighbors are two triangles and only one square. If K = 5, it is assigned to the squares class

because the five nearest neighbors are three squares and only two triangles.

Figure 10: Visual representation of K-Nearest Neighbors. Adapted from [32]

14

CHAPTER 2. MACHINE AND DEEP LEARNING

SVMs are supervised learning models that evaluate data for classification and regression analysis.

They create hyperplanes that are drawn at the maximum distance between two classes from the training

data points (support vectors), since the greater the margin, the lower the classifier’s generalization error.

Then, new samples are predicted to belong to a category according to which side of the gap they fall [33].

Figure 11 provides an example of a linear classification perfomed by SVM. If a new sample fell to the right

of the hyperplane, it would be classified as the red dot class, and it would otherwise be classified as the

blue dot class if it fell to the left of the hyperplane.

Hyperplane

Support
Vectors

Figure 11: Visual representation of Support Vector Machines. Adapted from [34]

However, with the help of kernel functions, SVMs may do non-linear classification as well by implicitly

translating their inputs into high-dimensional feature spaces. Some examples of kernel functions used in

SVM classifiers are linear, polynomial and radial basis functions.

DT learning is a supervised ML technique for producing a decision tree from training data. DT builds

classification or regression models in the form of a tree structure. It is a model that consists of a mapping

from item observations to conclusions about its target value. In tree structures, leaves indicate labels,

nonleaf nodes represent features, and branches represent combinations of features that lead to decisions

on the target [35].

A RF classifier is an ensemble ML algorithm. One note should be added regarding ensemble methods

before addressing RF. Ensemble learning is the process of building and combining many models to tackle

a specific computational issue. Ensemble learning is generally used to improve a model’s performance or

reduce the risk of an unintentionally poor model selection [33]. Bagging is an ensemble learning technique

for reducing variance in a noisy dataset. It consists of selecting a random sample of data from a training set

with replacement (individual data points might be used multiple times). These weak models are then trained

individually after multiple data samples are collected, and depending on the kind of task (for example,

regression or classification), the average or majority of those predictions provides a more accurate estimate.

Knowing this, RF employs parallel ensembling, in which numerous DT classifiers are fitted in parallel on

15

CHAPTER 2. MACHINE AND DEEP LEARNING

age < 15

is male?

+2 +0.1

-1

Y

Y N

N

Figure 12: Visual representation of Decision Tree

distinct dataset sub-samples, as illustrated in Figure 13, and the final result is determined by majority

voting or averages. Therefore, the overfitting problem is reduced, and prediction accuracy and control are

improved. As a result, a RF learning model based on many DTs is usually more accurate than one based

on a single DT. It combines the previously mentioned bagging technique with random feature selection

to create a succession of DTs with controlled variance. It works well for both categorical and continuous

variables and may be applied to both classification and regression issues [23].

Dataset

Result 1 Result 2 Result 3

Majority voting / Averaging

Final result

Figure 13: Random Forest structure. Adapted from [23]

ANNs-based supervised classifiers are extremely sophisticated and may be further subdivided into a

number of distinct but related ideas. They are based on the neural network of the brain. These algorithms

are used in most cutting-edge artificial intelligence applications and are typically used when working with

very big datasets. They also serve as the foundation for deep learning approaches, as detailed below in

16

CHAPTER 2. MACHINE AND DEEP LEARNING

both sections 2.2.3 and 2.3.

2.2.3 Artificial neural networks

In general, a biological neuron accepts inputs and arranges them to perform an operation, which results

in the final output. When looking at biological neurons, there are four major components: dendrites, cell

bodies, axons, and synapses. Dendrites are in charge of accepting incoming impulses into the cell body.

The cell body subsequently processes these electrical signals and converts them to the final output. The

output signal is then transferred from the cell body to the other neurons through the axon, which serves as

a transmission line between neurons. Synapses are the locations placed between neurons and dendrites

that are responsible for gathering input from neurons [36].

ANN is a supervised ML algorithm that is inspired by the biological structure and function of the human

brain and, as seen in Figure 14, the intricacy of biological neurons in the brain can be mimicked.

x1

x2

xn

w1

w2

wn

z = Σ wi xi + b
i f(z) output

Figure 14: Artificial neuron. Adapted from [37]

In the case of ANN, inputs are directed to the body of an artificial neuron. In Figure 14, X(n) represents

the inputs; each input is multiplied by its associated weight, which is a measure of the input’s connection

strength and is represented by W(n). The summing function is then given weighted inputs and the bias

(b). The summing function’s value (z) will be sent to the activation function (f), which will yield the final

output [36]. Activation functions specify a range of values for the neuron’s output, determining if the

neuron’s input to the network is essential or not [38]. Some examples of activation functions are sigmoid

(Eq 2), TanH (Eq 3), and ReLU (Eq 4) [39].

5 (G) = 1
1 + 4−G (2)

5 (G) = 4G − 4−G
4G + 4−G (3)

17

CHAPTER 2. MACHINE AND DEEP LEARNING

5 (G) =

G G ≥ 0

0 G < 0
(4)

The weights of an ANN are initially randomly assigned, but they are updated during the training process.

This is possible by applying both forward and back propagation. In forward propagation, information travels

in one direction only: forward. Inputs are fed into the neural network, and the produced outputs are

compared to the real ones, with a loss function used to determine the difference [40]. Then, in back

propagation, the internal weights are adjusted using optimization methods to reduce the loss function [41].

An ANN is composed of three layers: an input layer, a hidden layer, and an output layer. There must

be a link between the nodes in the input layer and the nodes in the hidden layer, as well as between each

node in the hidden layer and the nodes in the output layer [36]. In the input layer, each neuron represents

an input feature, and no computation is performed. In the hidden layer the nodes are not visible. They

serve as an abstraction for the neural network. The hidden layer performs all types of calculations on the

features received through the input layer by using a weighted linear summation followed by an activation

function, and sends the results to the output layer. Then the output layer takes the information learnt from

the hidden layer and provides the final value. The number of output neurons represents the number of

predictions. This means that, if it is a regression or binary classification problem, this layer will only have

one neuron. If it is a multiclass classification problem, the number of neurons will be equal to the number

of classes [42]. Figure 15 shows an example of an ANN’s structure.

Input Hidden Output

Figure 15: Artificial Neural Network

18

CHAPTER 2. MACHINE AND DEEP LEARNING

2.3 Deep Learning

Deep Learning (DL) is a subset of ML whose methods are based on multi-layered ANNs with feature learning

techniques. These techniques enable a system to automatically identify the representations required for

feature detection from raw data. This eliminates the need for human feature engineering by allowing a

machine to learn the features and then use them to execute a specified activity. But, for this to be possible,

DL algorithms demand larger amounts of data.

The simplest DL architecture is the Deep Neural Network (DNN). A DNN is an ANN with various layers

between the input layer and the output layers. In other words, a DNN has multiple hidden layers [43].

Figure 16 shows a visual distinction between these two architectures.

Figure 16: Artificial Neural Network vs Deep Neural Network

The inner workings of the layers and neurons are similar between ANN and DNN, meaning DNNs are

feedforward networks that transfer data from the input layer to the output layer without looping back. The

DNN starts by creating a map of virtual neurons and assigning random weights to their connections. The

inputs and weights are multiplied, and the result is a value between 0 and 1. An algorithm would update

the weights if the network did not detect a pattern correctly. As a result, the algorithm might increase the

influence of specific factors until it finds the optimal mathematical manipulation to fully analyze the input.

To understand better the concepts of DL, Table 4 provides a few important terminologies.

2.3.1 Training phase

In order to start training a DL model, just as ANN, the initial model weights are chosen randomly. Then, the

model weights are updated to reduce the error between the algorithm’s current output and the expected

output. This error is measured by the loss function and weight-finding algorithms are used to minimize this

function, knows as optimization algorithms. These algorithms are specific implementations of the gradient

descent algorithm, which is a technique to minimize loss by computing the gradients of loss with regard

to the parameters of the model in training data.

19

CHAPTER 2. MACHINE AND DEEP LEARNING

Table 4: Deep Learning concepts [13, 44]

Concept Description

Activation Func-

tion

Function that takes the weighted sum of all the inputs from

the previous layer and then creates and passes an output value

(usually nonlinear) to the following layer.

Back-

propagation

Most commonly used algorithm for Gradient Descent. Begins at the

output layer and traverses the network backwards.

Batch Set of examples utilized in one model training iteration.

Batch size The number of examples in a batch. It’s an hyperparameter.

Epoch
A full training pass across the entire dataset while updating model

weights. The number of epochs is a key hyperparameter.

Gradient
Partial derivatives vector with regard to all independent

variables.

Gradient

Descent

Technique to minimize loss by computing the gradients of loss with

regard to the parameters of the model in training data.

Hyper-

parameter

Constant parameter whose value is determined before the

learning process.

Learning rate

Scalar that is used to train a model with gradient descent. The

gradient descent technique multiplies the learning rate by the

gradient at each iteration, meaning it controls the speed of the

gradient update. It’s also a key hyperparameter.

Loss
Function that calculates the difference between the algorithm’s

current output and the expected output.

Neuron The neural network’s basic unit.

Optimizer
Specific implementation of the gradient descent algorithm.

Examples are SGD and Adam.

Parameter

Model variable that is self-taught by the ML system. Weights,

for example, are parameters whose values the ML system learns

over time through training iterations.

Training Procedure for determining a model’s optimum parameters.

Various optimizers are researched within the last few couples of years each having its advantages and

disadvantages, but the most commonly used is Stochastic Gradient Descent (SGD) [45].

In SGD, the back-propagation algorithm is used to compute the gradients of the loss function, and the

results are input to the SGD method to update the parameters (weights and biases) incrementally after

each epoch.

20

CHAPTER 2. MACHINE AND DEEP LEARNING

Instead of computing the gradient of the error based on all training samples like GD, SGD creates

an approximation of the actual gradient error based on a single training sample. As a result of the faster

calculation of the approximation, DNN can train faster and generalize better with SGD [46].

The difference between the non-updated and the updated weight can be controlled using the learning

rate hyperparameter and it is possible to define how to calculate the updated weight

,
′
G =,G − 0(m�AA>A

m,G
) (5)

where ,
′
G is the new weight, ,G is the old weight, 0 is the learning rate, and m�AA>A

m,G
is the gradient

(derivative of error with respect to weight) [47]. If the value of the learning rate hyperparameter is close

to zero, the difference between the old and new weight would be minimal, meaning that the greater the

learning rate, the greater the weight differential.

2.3.2 Challenges of deep neural networks

It is difficult to train a DNN that can generalize well to unknown input data. A model with insufficient

capacity cannot learn the problem, while a model with excessive capacity may learn it too well and overfit

the training dataset. In both circumstances, the model does not generalize effectively. However, DNNs

tend to overfit because of the additional abstraction layers that enable them to model unusual relationships

in the training data.

The complexity of a neural network model is determined by both its structure (number of nodes and

layers) and its parameters (weights). As a result, in order to reduce overfitting, it is possible to lower a

neural network’s complexity by changing its structure or its parameters [48]. Instead of changing the neural

network’s architecture, it is more typical to limit the model’s complexity by changing the model’s weights,

keeping them as small as possible. Small parameters imply a less complex and, as a result, more stable

model that is less susceptible to statistical fluctuations in the input data.

Methods that aim to reduce overfitting by maintaining network weights minimal are referred to as

regularization methods and the most common ones include early stopping, L1, L2 and dropout [48].

Early stopping takes a straightforward strategy, stopping the network’s training when the model does

not improve on the validation set score, or, in other words, when the error on the validation set starts to

grow.

Weight decay, also known as weight regularization, is another strategy for decreasing overfitting in

neural networks. Weight decay penalizes the network for having a high weight distribution by adding a

cost to the training loss [48]. Examples of these methods are L1 and L2. In L1, it applies an L1 penalty

equivalent to the absolute value of the magnitude of the coefficient. In L2, It applies an L2 penalty equivalent

to the square of the magnitude of the coefficients [49].

21

CHAPTER 2. MACHINE AND DEEP LEARNING

In dropout, at every iteration of the training process, randomly selected nodes and their connections

are dropped from the neural network. This prevents units from over-co-adapting, which would otherwise

lead to overfitting problems. The derivative obtained by each parameter in a typical neural network tells

it how it should change such that the resultant loss function is minimized, given what the other units

are doing. As a result, units may evolve in such a way that they correct the errors of other units, which

can lead to complex co-adaptations. This results in overfitting due to the fact that these co-adaptations

cannot generalize to unseen data. Dropout makes the presence of additional hidden units unpredictable,

preventing co-adaptation. As a result, a hidden unit cannot rely on other units to fix its errors. It must

function properly in a wide range of situations created by the other hidden units [50].

In addition to the overfitting problem, DNNs also suffer from high computation times. DNNs must take

into account a variety of training parameters, including the size (number of layers and units per layer),

learning rate, and starting weights. Due to the time and processing resources required, sweeping across

the parameter space for optimal parameters may not be practical. However, powerful processing hardware

such as Graphics Processing Unit (GPU)s are ideal for training DL models as they can handle numerous

computations at the same time. They feature a lot of cores, which makes it easier to run several parallel

operations at the same time, resulting in a speed up in the training process.

2.3.3 Deep learning architectures

The growth in the field of DL architectures during the last two decades has provided enormous prospects

for implementing it in a variety of applications. The next section introduces four popular DL architectures:

DNN, Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and autoencoders [51, 52].

Deep neural networks As mentioned in Section 2.3, DNNs are feed forward networks, in which data

goes from the input layer to the output layer without traveling backwards. They are based on ANNs but,

unlike them, DNNs contain multiple hidden layers. In spite of this, the inner workings of the layers and

neurons are similar between ANN and DNN.

Convolutional neural networks A CNN is a multilayer supervised neural network that was originally

inspired by the neurobiological process of animal visual cortex [51]. It is commonly used for processing

data with a grid pattern, such as as images and videos. It is built to learn spatial hierarchies of features

automatically, from low-level to high-level patterns.

CNNs are made up of three types of layers: convolutional, pooling, and fully connected layers. In

general, the convolutional layer extracts features from the input, the pooling layer minimizes the size of the

input data to the following layers, and the fully connected layers map the features into a final output, such

as classification. Figure 17 provides an overview of the architecture of a CNN and how it is trained. The

22

CHAPTER 2. MACHINE AND DEEP LEARNING

performance of a model with certain kernels and weights is determined using a loss function and forward

propagation and they are updated using the gradient descent optimization process.

Input
Image

Convolution +
ReLU

Convolution +
ReLU

Max
Pooling...

Kernels

Convolution +
ReLU

Convolution +
ReLU

Max
Pooling...

Kernels

FC ... FC
Output

Label
Loss

Forward Propagation

Back Propagation

Weights

CNN

...

Update

Figure 17: Convolutional Neural Network architecture. Adapted from [53]

The convolutional layer is a key component of the CNN architecture that conducts feature extraction

using a mix of linear and nonlinear techniques, such as convolution and activation functions. Convolution

is a form of linear operation used for feature extraction in which a tiny array of numbers, called a kernel,

is applied over the tensor, which is also an array of numbers. At each point of the tensor, an element-wise

product between each element of the kernel and the input tensor is computed and added to generate the

output value in the corresponding place of the output tensor, referred to as a feature map (Figure 18). This

technique is done with several kernels to create an arbitrary number of feature maps that reflect distinct

features of the input tensors; hence, different kernels may be regarded as different feature extractors.

The size and number of kernels are two fundamental hyperparameters that determine the convolution

operation [53].

The stride is the distance between two consecutive kernel points, and a stride of 1 is the most popular

choice. However, a stride greater than 1 is occasionally used to accomplish feature map downsampling.

The pooling procedure is the alternate approach for downsampling.

It is important to emphasize that the above convolution method prevents the center of each kernel

from overlapping the input tensor’s outermost element, thereby reducing the output feature map’s height

and width in comparison to the input tensor. Padding, usually zero padding, is a strategy for dealing with

this problem that involves adding rows and columns of zeros on either side of the input tensor in order to

fit the center of a kernel on the outermost element while maintaining the same in-plane dimension during

the convolution process. After the convolution procedure, each subsequent feature map would be smaller

if there was no padding [53].

Identifying the kernels that perform best for a particular job based on a specific training dataset is the

process of training a CNN model with relation to the convolution layer. Kernels are the only parameters

in the convolution layer that are automatically learnt during the training process. The size and number of

23

CHAPTER 2. MACHINE AND DEEP LEARNING

1 2 1 0 2

2 0 0 1 0

1 0 2 1 0

0 1 0 2 1

0 2 1 0 2

1 0 1

0 1 0

1 0 1
Element-

wise
product

Sum up

5

1 2 1 0 2

2 0 0 1 0

1 0 2 1 0

0 1 0 2 1

0 2 1 0 2

1 0 1

0 1 0

1 0 1
Element-

wise
product

Sum up

5 3 6

2 6 2

5 3 7

Input tensor Kernel Feature map

Figure 18: Convolution operation with a kernel size of 3 × 3, stride of 1, and no padding. Adapted from [53]

the kernels, stride, and padding are hyperparameters that must be defined before the training process

begins [53]. Then, the output of the convolution operation is passed through a non-linear activation function,

which is usually the ReLU function (Eq. 4).

After receiving the feature maps from the convolutional layer, the pooling layer will perform a standard

downsampling operation on them, reducing their in-plane dimensionality in order to introduce translation

invariance to tiny shifts and distortions and reducing the number of learnable parameters. Max pooling is

the most popular type of pooling procedure, which selects patches from input feature maps, outputs the

largest value in each patch, and discards all other values (Figure 19) [53].

8 3 5 9

4 7 2 4

6 5 2 1

1 7 3 6

8 9

7 6

Figure 19: Max pooling with a filter size of 2 × 2, no padding, and a stride of 2. Adapted from [53]

24

CHAPTER 2. MACHINE AND DEEP LEARNING

Although max pooling is the most popular type of pooling operations, there is another type called global

average pooling. It is an extreme sort of downsampling in which a feature map is downsampled into a 1 x 1

array, by simply taking the average of all the components in each feature map. Before the fully connected

layers, this step is usually performed, because it can decrease the number of parameters that may be

learned, and it allows the model to take inputs of varying sizes [53].

After obtaining the feature map of the last convolutional or pooling layer, it is now time to connect it

to the fully connected layer. In order to do this, the output needs first to be flattened, or, in other words,

needs to be transformed into a one dimensional tensor. After being flattened, the tensor is ready to be fed

as input to the fully connected layer and each value of the input is connected to all neurons.

Recurrent Neural Networks In a feedforward neural network, the outputs of one layer are passed

to the next layer, which is a unidirectional process. Past data cannot be stored in these feedforward

networks [54].

A RNN can access previous data because of its loop-like structure, making them ideal algorithms for

ML supervised challenges involving sequential data, such as speech and handwriting recognition [51].

Recurrent connections can be generated in RNN in three ways: starting in a neuron and ending in the

same neuron; starting in a neuron and ending in another neuron from the same layer; or starting in a

neuron and ending in another neuron from the previous layer. Only hidden and output neurons establish

these recurrent connections; no input or bias neurons are involved. This design allows for the storage of

historical data in order to predict current data [55], meaning that it considers both the current input and

what it has learnt from previous inputs when making a decision.

x

h f

xt-1

f

ht-1

yt-1

xt

f

ht

yt

xt+1

f

ht+1

yt+1y

Figure 20: Recurrent Neural Network architecture. Adapted from [56]

However, RNNs suffer from the vanishing gradients problem, which makes learning large data se-

quences difficult. Gradients carry the information that is utilized in RNN parameter updates, and as they

backpropagate through time, they become smaller and smaller. The parameter updates then become

so tiny that no significant learning has taken place. Specific RNN designs, such as the Long Short-Term

25

CHAPTER 2. MACHINE AND DEEP LEARNING

Memory (LSTM) and Gated Recurrent Unit (GRU), were created to overcome the problem of vanishing

gradients.

LSTM is a RNN architecture that was created to more precisely model temporal sequences and their

long-range dependencies. LSTMs have a similar architecture to RNNs, with the exception that they employ a

separate function to calculate hidden state in addition to the gating mechanism. To regulate the information

passing through, it has three gates: an input gate, a forget gate, and an output gate. In LSTMs, there is

a cell that saves past values and keeps them until a forget gate orders the cell to forget them. In another

sense, it preserves earlier iterations for as long as they are required. An input gate adds a new input to the

cell, while an output gate determines when the vectors from the cell should be sent through to the next

hidden state [57]. Each gate is controlled by weights in the cell. The training algorithm, which is usually

referred to as Backpropagation through time (BPTT), optimizes these weights depending on the network

output error [52]. It is worth mentioning that LSTM only preserves information of the past because the

only inputs it has seen are from the past. These type of LSTM are unidirectional LSTMs but there are also

bidirectional LSTMs that run the inputs in two ways, one from past to future and one from future to past.

GRUs are a simpler RNN architecture with only two gates, the rest gate and the update gate. The

rest gate is used in a model to determine how much information from the past should be forgotten or

remembered. It decides which information to forget based on the information in the previous state and the

next input candidate. The update gate aids the model in determining how much information from previous

time steps should be passed on to future time steps.

GRU is a simple version LSTM, so it can be trained faster, and can execute tasks more efficiently. The

LSTM, on the other hand, is more expressive, and with more data, it can provide better performance.

Autoencoders Autoencoder is an unsupervised neural network that learns how to compress and encode

data effectively before reconstructing it back to a representation that is as similar to the original input as

possible [58].

As shown in Figure 21, this type of neural network is made up of three layers: input, hidden, and

output. First, a suitable encoding function is used to encode the input layer into the hidden layer. The

hidden layer contains a significantly smaller number of nodes than the input layer. The compressed form

of the original input is stored in this hidden layer. Using a decoder function, the output layer attempts to

recreate the input layer.

As a result, autoencoders consists of 4 main parts [58, 59]:

• Encoder: The model learns how to compress the input data into an encoded form by reducing the

input dimensions.

• Bottleneck (latent space): The compressed form of the input data is stored in this layer. This is

the smallest input data dimension imaginable.

26

CHAPTER 2. MACHINE AND DEEP LEARNING

x2

x3

x4

a1

a2

x1

x2'

x3'

x4'

x1'

Input layer Hidden layer Output layer

Figure 21: Autoencoders architecture. Adapted from [52]

• Decoder: The model learns how to reconstruct data from the encoded representation as closely

as possible to the original input.

• Reconstruction Loss: This is a way for determining how well a decoder works and how near the

output is to the original input. Back propagation is then used in the training to reduce the network’s

reconstruction loss.

The compressed form of the original input must only have essential information. In other words, an

autoencoder can reduce data dimensionality by learning to ignore noise from the input data.

2.4 Automated machine learning

While ML has several proven benefits, its effective use needs a significant amount of work on the part of

human specialists, since no algorithm can achieve good performance on all possible challenges. Despite

their familiarity with data, researchers frequently lack the ML ability required to apply these approaches to

large data sets. Researchers can and do collaborate with professional data scientists, but the collaborative

approach involves time and effort from both parties. As a result, devising and deploying ML solutions is

complex, as the process starts with a lengthy data supply procedure, continues with identifying the suitable

collaborators, and requires constant back-and-forth between ML professionals and domain experts. By

automating some of the components that need human skill, sectors will be able to create, verify, and

deploy ML systems more quickly [60]. As a result, Automated Machine Learning (AutoML) has arisen

with the goal of automatically optimizing sections of the ML pipeline, such as feature engineering, model

selection, and hyperparameter optimization, as shown in Figure 22.

In recent years, multiple packages have been developed that provide AutoML. Some examples are:

27

CHAPTER 2. MACHINE AND DEEP LEARNING

Data preparation and
cleaning

Feature selection and
cleaning

Model building and
training

Hyperparameter
optimization

Model validation,
selection and
deployment

AutoML optimization

Figure 22: Machine learning pipeline with AutoML. Adapted from [60]

• AutoWEKA [61] - package for selecting a ML algorithm and its hyperparameters at the same

time; when paired with the WEKA package, it produces good models for a wide range of data sets

automatically.

• Auto-PyTorch [62] - it is based on the PyTorch DL framework and it optimizes the network

architecture and training hyperparameters together and reliably to allow fully automated DL.

• TPOT [63] - data science assistant that uses genetic programming to enhance ML pipelines and it

is built on top of scikit-learn.

• AutoKeras [64] - open-source software library for AutoML. It is built in Keras and provides methods

for searching for DL architectures and hyperparameters for models.

2.5 Python libraries for machine and deep learning

While there are many languages to choose from, Python1 is one of the most developer-friendly ML and DL

programming languages available, and it comes with a large library to suit any use-case or project. Most

popular libraries include [65, 66]:

• Tensorflow2: high-performance numerical computing open source software framework. This li-

brary, which was created by Google researchers and engineers, has a strong support for ML and DL.

It works with tensors, which are structures that imitate scalars, vectors, and matrices and allow for

calculations between them. This tool’s key features include straightforward numerical calculation,

deployment on numerous CPUs or GPUs, and a robust data visualization interface.

• Keras3: DL framework that provides high-level building blocks for designing practically any type of

DL model in a far more convenient way than constructing it from the ground up. Keras also enables

users to train models on both the CPU and GPU.

1https://www.python.org/
2https://www.tensorflow.org/
3https://keras.io/

28

https://www.python.org/
https://www.tensorflow.org/
https://keras.io/

CHAPTER 2. MACHINE AND DEEP LEARNING

• PyTorch4: open-source ML/DL library created by Facebook and based on Torch. It offers a large

number of tools and libraries that assist Computer Vision, Natural Language Processing (NLP), and

a variety of other ML tasks. It enables developers to run Tensor computations with GPU acceleration

and aids in the creation of computational graphs.

4https://pytorch.org/

29

https://pytorch.org/

C
h
a
p
t
e
r

3
Machine and Deep Learning in DNA sequence

classification

3.1 DNA sequences

Deoxyribonucleic acid (DNA) is composed of a linear string of nucleotides, or bases, which are referred to

by their chemical names’ first letters: Adenine (A), Thymine (T), Cytosine (C), and Guanine (G).

DNA sequencing is the technique of finding the order of the four bases. Scientists can determine the

type of genetic information carried in a DNA segment by examining the sequence. Furthermore, and more

significantly, sequencing data can reveal mutations in a gene that could lead to illness, by comparing a

healthy and a mutated sequence [67].

The four chemical bases of the DNA double helix always connect with the same partner to produce

”base pairs”. A is always paired with T, while C is always paired with G. This pairing explains the technique

by which DNAmolecules are copied when cells divide, as well as the methods used in most DNA sequencing

research. The human genome is made up of around 3 billion base pairs, which carry the instructions for

creating and maintaining a human person [67].

Since the Human Genome Project’s completion [68], technological advancements and automation

have made it possible for individual genes to be sequenced on a regular basis, by reducing the amount of

time it takes to perform the sequencing and also reducing its cost. Some labs can sequence over 100,000

billion bases per year, and a few thousand dollars is enough to sequence an entire genome [67].

30

CHAPTER 3. MACHINE AND DEEP LEARNING IN DNA SEQUENCE CLASSIFICATION

3.2 DNA sequence classification - Traditional Machine

Learning

Understanding the connections between protein structure and function is one of Biology’s main goals.

The basic amino acid sequences provide particularly helpful structural information for understanding the

structure-function paradigm. The idea that sequences with similar structures have comparable functions

is used to classify DNA sequences. Sequence alignment techniques such as BLAST [69] and FASTA [70]

have historically been used to determine sequence similarity, and the majority of sequence classification

is still done by these methods. This decision is based on two primary assumptions: the functional compo-

nents have similar sequence properties, and the functional elements’ relative order is preserved across

sequences. These assumptions are applicable in a wide range of situations, but they are not universal [71].

Regardless, despite recent advancements, the major issue that severely restricts the use of alignment

techniques remains their computational time complexity. As a result, many effective and computationally

affordable approaches for analyzing sequence data have recently been presented. Since the majority of

sequence analysis tasks are expressed as binary or multiclass classification tasks, ML techniques have

been playing an important role [72].

In ML, the goal of classification is to use the training set to create a classification model that can predict

the category of unknown incoming samples. DNA sequence classification is the process of predicting

the kind of DNA sequence based on structural or functional similarities, then predicting the sequence

function and relationships with other sequences, and finally assisting in the identification of genes in DNA

molecules [2].

However, for a ML model to be able to predict, it first needs input features, and that is the main

problem with sequences. The most difficult component is the feature extraction because the sequences

only consist of a set of four letters, meaning they lack explicit features. Converting sequences into an

effective numerical representation that reflects the underlying relationship with the feature to be predicted

can have a big impact on the model’s performance [71, 73].

It is standard practice to encode molecular information as numerical features in order to apply various

ML algorithms to molecular data. Molecular descriptors are one of the most powerful tools for describing

the biological, physical, and chemical features of molecules, and they have been utilized in a variety of

research to better understand molecular interactions. These descriptors capture and amplify different

features of molecular topology in order to better understand how molecular structure influences molecular

properties [74]. However, it is worth emphasizing that these descriptors need to be manually created,

meaning the feature selection is a handcrafted process. Some examples of DNA sequence descriptors are

the nucleic acid composition, structure composition and sequence length [72, 73, 75]. Table 5 provides an

overview of packages capable of calculating descriptors for not only DNA but also Ribonucleic acid (RNA)

and protein sequences. In addition, some of these packages also perform ML functions on the calculated

31

CHAPTER 3. MACHINE AND DEEP LEARNING IN DNA SEQUENCE CLASSIFICATION

features.

Table 5: Overview of packages with DNA descriptors

Year Authors Title Focus

2014 Liu et al. repDNA [76] Generate widely used features reflecting the

physicochemical properties and sequence-

order effects of DNAs and nucleotides

2016 Dong et al. BioTriangle [77] Full pipelining from getting molecular data,

molecular representation to constructing ML

models on DNA, RNA and protein sequences.

2017 Liu BioSeq-Analysis [72] Automatically completing feature extraction,

predictor construction, and performance eval-

uation on DNA, RNA and protein sequences.

2018 Dong et al. PyBioMed [74] Calculate numerous features of biological

molecules, with the goal of constructing inte-

grated analytical pipelines from data gathering,

data validation, and descriptor calculation to

modeling.

2019 Nikam and

Gromiha

Seq2Feature [78] Extract protein and DNA sequence-based fea-

tures.

2019 Muhammod

et al.

PyFeat [79] Extract features from proteins, DNAs and

RNAs, with a particular emphasis on features

that capture information on the interaction of

nearby residues.

2019 Chen et al. iLearn [73] Feature extraction, clustering, normalization,

selection, dimensionality reduction, predictor

construction, best descriptor/model selection,

ensemble learning and results visualization for

DNA, RNA and protein sequences.

2021 Bonidia et al. MathFeature [75] Implements mathematical descriptors able to

extract relevant numerical information from

DNA, RNA and proteins.

Another important stage in sequence analysis is the creation of predictors. Many ML methods have

been employed to predict structural and functional characteristics and to help in the annotation of genomic

data. SVM, RF, ANN, KNN, and LgR are some examples of these methods [73].

32

CHAPTER 3. MACHINE AND DEEP LEARNING IN DNA SEQUENCE CLASSIFICATION

3.3 DNA sequence classification - Deep Learning

A common difficulty in data mining is classifying biological sequences as a specific data type. This is

a tough challenge, due to the non-numerical properties of biological sequence elements, the sequence

interaction between sequence elements, and the variable sequence length [2]. ML methods for supervised

classification tasks are, without a doubt, heavily reliant on the feature extraction stage, and it is required to

detect and quantify relevant aspects of the objects to classify in order to develop a suitable representation.

DL models have recently been shown to be capable of automatically extracting meaningful features from

input patterns [71]. This is possible due to feature learning techniques that DL methods possess. These

techniques allow the automatic identification of the representations required for feature detection from raw

data, meaning that the human feature engineering is removed, and the machine will learn the features

instead. As a result, DL models only need the sequence itself as input, unlike ML models that require

the previously calculated features. However, first it is required to transform the string sequence into a

numerical value in order to create an input matrix for the model [2]. Sequential encoding, one-hot encoding,

and k-mer encoding are three popular methods for sequence encoding [80] and Table 6 summarizes the

differences between them. The encoding technique is also significant for classification accuracy.

Table 6: DNA sequence encoding methods [2]

Encoding Method Features

Sequential encoding Each base is encoded as a number. For example,

change [A,T,G,C] to [0.25,0.5,0.75,1.0], and any

other character to 0.

One-hot encoding Each base is encoded as a vector. [A,T,G,C] will be-

come [0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]. These

vectors can be combined into a 2-dimensional array.

K-mer encoding Decomposes a sequence into k-length overlapping

segments. ”ATGCATCGA”becomes ”ATGCAT”, ”TG-

CATG”, ”GCATGC”, ”CATGCA”when k=6 is used. The

segments must then be converted to numerical val-

ues.

In the case of the k-mer encoding method, the encoded sequence is not yet ready to be fed into

the model, as the result of the encoding method is not a numerical value. The DL model still needs this

produced k-mer sentence to be transformed into a dense feature vector matrix and this can be achieved by

using a word embedding layer. Word embedding is a technique for assigning each word in a sequence a

continuous vector representation, and words with similar meanings are near in distance in the vector space

generated. Gunasekaran et al. [81] used the k-mer encoding to generate segments of DNA sequences

and then applied the word embedding layer to their model to transform the sentence into a dense feature

33

CHAPTER 3. MACHINE AND DEEP LEARNING IN DNA SEQUENCE CLASSIFICATION

vector matrix. It is also possible to apply an embedding layer to other encoding methods. Although there

is no semantic similarity to uncover, this concept has also been applied at character-level, representing a

first step toward completely automated feature learning. For example, Lo Bosco and Di Gangi [71] used

CNN and RNN for the purpose of DNA sequence classification. For both models, their first layer was an

embedding layer, which accepted as input 16-dimensional one-hot encoding of sequence characters and

produced a 10 dimensional continuous vector. The embedding representation may be achieved using a

single feed-forward layer using random weights in order to learn embedding for all of the terms in the

training dataset.

In Section 3.4, relevant previous work on DNA classification will be provided, and it is possible to

conclude that CNN and RNN are the most commonly used DL models.

3.4 Relevant previous work on DNA classification

DNA sequence classification is a critical problem in biomedical research, and since current solutions

involve the use of homologies, which is a long and costly process, multiple ML techniques were used to

successfully complete this task. In recent years, numerous articles and papers were published regarding

this classification challenge with both traditional ML and DL approaches.

Nair et al. [82] proposed a unique technique for organism classification based on a combination of

Frequency Chaos Game Representation (FCGR) and DNA. Chaos Game Representation (CGR) displays DNA

sequences in a unique way and reveals hidden patterns in them. The frequency of sub-sequences contained

in the DNA sequence is shown by FCGR, which is developed from CGR. The taxonomic distribution of

Eukaryotic species is broken down into eight groups, and ANN is used to classify them.

Rizzo et al. [83] introduced a DNN based on spectral sequence representation for DNA sequence

classification. The framework is evaluated on a dataset of 16S genes, and its results are compared to the

General Regression Neural Network as well as Naive Bayes, RF, and SVM classifiers in terms of accuracy

and F1 score. When it came to classifying short sequence fragments of 500 bp, the DL technique beat all

other classifiers.

Nguyen et al. [84] developed a new method for classifying DNA sequences using a CNN while treating

them as text input. Because the authors employed one-hot vectors to represent sequences as input to

the model, the important position information of each nucleotide in sequences is preserved. The authors

investigated the suggested model using 12 DNA sequence datasets and found substantial improvements

in all of them. Out of the 12 datasets used, 10 of them include DNA sequences that wrap around histone

proteins (for example, H3 and H4) and the other datasets are Splice and Promoter datasets. This finding

suggests that a CNN can be used to handle additional sequence challenges in bioinformatics.

Lo Bosco and Di Gangi [71] offer two distinct DL architectures (CNN and RNN) for DNA sequence

classification. For five separate classification tasks, they compare their results using a public data set of

34

CHAPTER 3. MACHINE AND DEEP LEARNING IN DNA SEQUENCE CLASSIFICATION

DNA sequences. Two DL architectures were examined in this work for automated classification of bacteria

species with no sequence preprocessing procedures. In comparison to a traditional CNN, the authors

have presented a LSTM that utilizes the nucleotide locations in a sequence. The CNNs outperform the

LSTM in the four easiest classification tasks, but their performance deteriorates in the last, when the LSTM

performs better.

Abd-Alhalem et al. [85] proposed, based on a custom layer, a new technique for classification of

bacterial DNA sequences. The FCGR of DNA is employed with a CNN. With a proper choice of the frequency

k-lengthen words occurrence in DNA sequences, the FCGR is used as a sequence representation technique.

The DNA sequence is mapped using FCGR, which generates a gene sequence image. Both local and global

patterns may be seen in this sequence. For image classification, a pre-trained CNN is used.

Chen et al. [86] explain the distinction between cell-free DNA and normal DNA. The authors employed a

variety of classification models to categorize normal and cfDNA, including KNN, SVM, and RF. In comparison

to all other algorithms, the authors determined that the RF had the best accuracy.

Shen et al. [87] introduced a model that combines a Bidirectional GRU network with k-mer embedding

to discover Transcription Factor (TF) binding sites on DNA sequences. DNA sequences are split into k-

mer sequences of varying lengths and stride windows. Then, they take each k-mer as a word and train

a word representation model on it using the node2vec technique. With this technique, the vectors are

carefully designed in such a way that a simple mathematical function reflects the amount of semantic

similarity between the words represented by those vectors. This means that words with common contexts

are placed close to one another in the vector. Finally, for feature learning and classification, they built a

deep bidirectional GRU model.

Helaly et al. [88] analyze three of the most current DL efforts for taxonomy classification using the 16S

rRNA barcode dataset. Three distinct CNN architectures are examined, as well as three different feature

representations: k-mer spectral representation, FCGR, and character-level integer encoding. The most

fine-grained classification challenge showed that representations that hold positional information about the

nucleotides in a sequence perform substantially better.

Zhang et al. [5] proposed a DL based technique (fully connected DNN) for predicting human essential

genes by combining features acquired from sequencing data with a protein-protein interaction network.

An embedding method (word2vec) is used to automatically learn the features, as well as 89 sequence

features derived from DNA sequence and protein sequence for each gene. They outperform numerous

traditional ML models, such as SVM, Naïve Bayes, RF, and Adaboost, using the same features. Results

show that the final model can accurately predict human gene essentiality with an average performance of

AUC higher than 94%.

Gunasekaran et al. [81] used CNN, CNN-LSTM, and CNN-Bidirectional LSTM architectures with Label

and k-mer encoding for DNA sequence classification. Different classification metrics were used to evaluate

the models. According to the findings of the experiments, the CNN and CNN-Bidirectional LSTM with k-mer

35

CHAPTER 3. MACHINE AND DEEP LEARNING IN DNA SEQUENCE CLASSIFICATION

encoding have good accuracy, with 93.16% and 93.13% on testing data, respectively.

Lugo and Hernández [89] presented a sequential DL approach for bacterium identification. To derive

an identification model for whole-genome bacterium sequences, the proposed neural network takes ad-

vantage of the massive volumes of data supplied by Next-Generation Sequencing. The bidirectional RNN

(BI-GRU) outperformed other classification algorithms (Naive Bayes, Multilayer Perceptron) after verify-

ing the identification model. In a low-dimensional space, a distributed representation was proven as the

appropriate encoding for bacterial genetic information. The distributed representation is given context by

combining two or more k-mer lengths. Context makes use of positional data, which is critical in biological

sequences.

Table 7 provides an overview of the previous work on DNA classification described above.

Table 7: Overview of DNA classification’s previous work

Year Authors Title Focus Classifier Features / Encod-

ing

2010 Nair et al. “ANN based classification

of unknown genome frag-

ments using chaos game

representation” [82]

Taxonomic classifi-

cation of Eukaryotic

species

ANN FCGR

2015 Rizzo et al. “A Deep Learning Ap-

proach to DNA Sequence

Classification” [83]

Classify 16S bacterial

genomic sequences

DNN, General

Regression

Neural Network,

Naive Bayes, RF,

SVM

k-mer encoding

2016 Nguyen

et al.

“DNA Sequence Classi-

fication by Convolutional

Neural Network” [84]

Solve DNA sequence

classification problem

in 12 datasets

CNN one-hot vectors

2017 Lo Bosco

and Di

Gangi

“Deep learning architec-

tures for DNA sequence

classification” [71]

Classification of bac-

teria species with no

steps of sequence pre-

processing

CNN, RNN Character-level one-

hot encoding

2017 Chen et al. “A Study of Cell-free

DNA Fragmentation

Pattern and Its Application

in DNA Sample Type

Classification” [86]

Cell-free DNA and nor-

mal DNA classification

KNN, SVM, RF DNA fragmentation

patterns

2018 Shen et al. “Recurrent Neural Net-

work for Predicting Tran-

scription Factor Binding

Sites” [88]

Identify and classify TF

binding sites on DNA se-

quences.

BI-GRU k-mer, word2vec

36

CHAPTER 3. MACHINE AND DEEP LEARNING IN DNA SEQUENCE CLASSIFICATION

2019 Helaly et al. “Convolutional Neural

Networks for Biological

Sequence Taxonomic

Classification: A Compar-

ative Study” [88]

16S rRNA barcode

dataset taxonomy

classification

CNN k-mer spectral rep-

resentation, FCGR,

and character-level

integer encoding

2020 Zhang et al. “DeepHE: Accurately pre-

dicting human essential

genes based on deep

learning” [5]

Pedict human essen-

tial genes on DNA se-

quences

fully connected

DNN

word2vec, sequence

features derived from

DNA sequence and

protein sequence

2021 Gu-

nasekaran

et al.

“Analysis of DNA Se-

quence Classification

Using CNN and Hybrid

Models” [81]

COVID, SARS, MERS,

dengue, hepatitis, and

influenza classification

CNN,

CNN-LSTM, CNN-

Bidirectional,

LSTM

Label and k-mer en-

coding

2021 Lugo and

Hernández

“A Recurrent Neural Net-

work approach for whole

genome bacteria identifi-

cation” [89]

Bacterium identification BI-GRU Distributed k-mer

37

C
h
a
p
t
e
r

4
Development and Implementation

4.1 Development Strategy

The main goal of this study was to create a tool that can automatically classify DNA sequences using ML/DL

models, followed by its integration into ProPythia. The other key objective was to integrate automated

machine learning classifiers into the OmniumAI software platforms.

However, it is crucial to understand the steps and the technologies necessary to build such tools. These

tools were built with Python, which is a high-level interpreted general-purpose programming language that

supports vast and extensive external libraries that are constantly evolving. PyCharm Code Editor was used

to combine Python code development, while also improving usability and user experience. Additionally, the

Anaconda software application was employed to facilitate package management and distribution. Then,

for building the entire classification pipeline, the PyTorch framework was used as it is one of the most

popular free open source and powerful DL frameworks.

In an ML project, after selecting the dataset, the first step is the data processing task since, in most

cases, the data is not ready to be fed into a model. The sequences need first to be converted into a

numerical representation, and how this step is executed has a substantial influence on the model’s

ultimate performance. As mentioned in Section 2.2.1, data processing can be subdivided into feature

extraction and feature selection. The first is the process of transforming raw data into suitable modelling

features, and the second consists of filtering irrelevant features, keeping the essential ones. If working

with a DL model, the user may not need to perform this step since these kind of models can extract the

features from the training data on their own.

In this study, descriptors were chosen to be the features for shallow ML classification models, which is

a manual feature extraction process. For DL models, they only need the sequences as input, but they still

38

CHAPTER 4. DEVELOPMENT AND IMPLEMENTATION

need to be in a numerical format. Encoders were utilized to address this problem, since they can create

numerical representations of a string of letters.

4.2 Setting up the Data

It is important to note that all sequence feature vectors that will be fed into the model need to have the

same input shape, regardless of whether the sequences have the same length or not. For example, a

sequence with a length of 100 and another sequence with a length of 200, that belong to the same dataset,

must be represented by a feature vector of the same size. When using descriptors, this can be achieved by

implementing them in a way that they are not dependent on the sequence’s length. However, when using

encodings, the only option is to truncate or fill all sequences to a length’s value. Using the example above,

the two sequences could be truncated or filled to have a length of 150, and then calculate the encoding.

To fill the sequence to a length’s value, a letter that did not belong to the A, C, T, and G alphabet was

added - the letter N.

The following chapter provides an overview of the descriptors and the encoders for DNA sequences

that were developed in this study.

4.2.1 Descriptors

Table 8 provides the list of all the implemented descriptors, as well as their respective group and resulting

vector size. The process of obtaining this list of descriptors was based on finding the descriptors that most

DNA descriptors packages from Table 5 implemented, as well as choosing the ones that did not depend

on the sequence’s length, as the datasets used in the case studies did not have sequences of uniform

length.

The # in the table represents the number of physicochemical indices to calculate.

Both the psychochemical properties and the nucleic acid composition are the most straight-forward

approaches to represent the DNA sequences.

Length Length descriptor is a simple descriptor that calculates the length of a sequence.

GC Content Guanine-Cytosine (GC) content feature encoding represents the quantity of guanine and

cytosine nucleotides in a sequence. It can be calculated as follows:

G =
#(�) + #(�)

!
(6)

where #(�) donates the number of the nucleotide C in the sequence, #(�) the number of the nucleotide
G and ! the length of the sequence.

39

CHAPTER 4. DEVELOPMENT AND IMPLEMENTATION

Table 8: List of implemented descriptors.

Descriptor groups Descriptor Vector Size

Psychochemical

Length 1

GC Content 1

AT Content 1

Nucleic Acid Compostion

Nucleic Acid Compostion (NAC) 4

Dinucleotide Acid Compostion (DNC) 16

Trinucleotide Acid Compostion (TNC) 64

Composition of K-spaced nucleic acid pairs (CKSNAP) 16

K-mer 4:
Accumulated Nucleotide Frequency (ANF) 3 ∗ 4

Auto Correlation and Cross Covariance

Dinucleotide-based Auto Covariance (DAC) # ∗ ;06
Dinucleotide-based Cross Covariance (DCC) # ∗ (# − 1) ∗ ;06
Dinucleotide-based Auto-Cross Covariance (DACC) # ∗ # ∗ ;06
Trinucleotide-based Auto Covariance (TAC) # ∗ ;06
Trinucleotide-based Cross Covariance (TCC) # ∗ (# − 1) ∗ ;06
Trinucleotide-based Auto-Cross Covariance (TACC) # ∗ # ∗ ;06

Pseudo Nucleic Acid Composition
Pseudo Dinucleotide Compostion (PseDNC) 16 + _
Pseudo K-tupler Compostion (PseKNC) 4: + _

AT Content Adenine-Thymine (AT) content feature encoding represents the quantity of adenine and

thymine nucleotides in a sequence. It can be calculated as follows:

G =
#(�) + #())

!
(7)

where #(�) donates the number of the nucleotide A in the sequence, #()) the number of the nucleotide
T and ! the length of the sequence.

Nucleic Acid Composition The Nucleic Acid Composition (NAC) encoding [90, 91] is one of the

approaches often used to represent DNA sequences; it represents the nucleotide frequencies of the

sequence. The frequencies of the 4 natural nucleotides may be determined as follows:

5 (8) =
#(8)
!
, 8 ∈ {�,�,) ,�} (8)

where #(8) is the number of nucleotide type and ! is the length of the DNA sequence.

Di-Nucleotide Composition Di-Nucleotide Composition (DNC) feature encoding [92, 93] is the com-

position of continuous dinucleotide pairs inside a DNA sequence. DNC feature encoding has 16 descriptors,

which are specified as follows:

� (8, 9) =
#(8 9)
! − 1

, 8, 9 ∈ {�,�,) ,�} (9)

40

CHAPTER 4. DEVELOPMENT AND IMPLEMENTATION

where #(8 9) is the number of dinucleotide represented by nucleotide types 8 and 9 , and ! is the length of

the DNA sequence.

Tri-Nucleotide Composition Tri-Nucleotide Composition (TNC) feature encoding [94, 95] reflects the

DNA sequence’s composition of continuous trinucleotide pairs. TNC feature encoding has 64 descriptors

(’AAA’, ’AAC’, ’AAG’, ’AAT’,..., ’TTT’), which may be described as follows:

� (8, 9, :) =
#(8 9:)
! − 2

, 8, 9, : ∈ {�,�,) ,�} (10)

where #(8 9:) is the number of trinucleotides represented by nucleotide types 8, 9 and : , and ! is the

length of the DNA sequence.

Composition of K-spaced nucleic acid pairs Composition of K-spaced Nucleic Acid Pairs (CKSNAP)

feature encoding [72, 96] denotes the composition of nucleotide pairs in a segment that are K-steps apart.

Specifically, we estimated the frequency of a nucleotide pair at positions 8 and 8 + + 1, where 8 = 1,...,

(; - - 1) and ; is the length of the sequence. For instance, given the sequence ���)���) and =

2, the nucleotide AT will appear twice, with A and T occurring at positions 1 and 4, as well as positions

5 and 8. Regardless of the number of , there are a maximum of 16 potential nucleotide pairings. This

coding method represents the close interactions between nucleic acids inside a DNA sequence segment.

K-mer The K-mer encoding [97, 98] determines the occurrence frequencies of K adjacent nucleotides in

a DNA sequence, which was widely employed in enhancer discovery and regulatory sequence prediction.

The K-mer (e.g. K = 4) descriptor is described as follows:

 (8) =
#(8)
!
, 8 ∈ {����,����,����, ...,)))) } (11)

where #8 is the number of K-tuple type and ! is the length of the DNA sequence.

The K-mer descriptor implemented additionally contains the Reverse Compliment Kmer (RCKmer). The

RCKmer encoding [73] is a variation of the K-mer descriptor that computes the occurrence frequencies of

reverse complement k adjacent nucleotides in a DNA sequence. For example, a DNA sequence has 16

types of 2-mers. Among them, ’TT’ is the opposite of ’AA’. By deleting the reverse complimentary K-mers,

there are only 10 varieties of 2-mers in the RCKmer method (i.e. ’AA’, ’AC’, ’AG’, ’AT’, ’CA’, ’CC’, ’CG’,

’GA’, ’GC’, and ’TA’).

Accumulated Nucleotide Frequency Accumulated Nucleotide Frequency (ANF) feature encoding

technique [99] represents the nucleotide density and distribution of each nucleotide inside a DNA segment.

The following formula illustrates how to determine the ANF of a DNA segment of length .

41

CHAPTER 4. DEVELOPMENT AND IMPLEMENTATION

3; =
1
;

;∑
9=1

5 (= 9), 5 (= 9) =

1 = 9 = @

0 >Cℎ4A
, ; = 1, ..., (12)

where = 9 is the nucleotide at the 9Cℎ position and @ ∈ (�,�,) ,�). When ; = 3, the nucleotide at

the ;Cℎ position in the sequence of ’TGCTACGC’ is C, and the density of this position is calculated as

33 = 1
3
∑3
9=1 5 (= 9) =

1
3 [5 (�) + 5 (�) + 5 (�)] =

1
3 [1 + 0 + 1] = 0.667. All locations’ densities

may be estimated identically. When computing the ANF at each place, however, there would be values,

which is not a vector of constant length. To circumvent this, the ANF was only computed for three places

located at 25, 50, and 75% of the sequence’s length.

Dinucleotide-based Auto-covariance The first autocorrelation descriptor is called Dinucleotide-based

Auto Covariance (DAC). As one of the multivariate modeling methods, autocorrelation can turn DNA se-

quences of varying lengths into vectors of constant length by assessing the correlation between any two

physicochemical variables. Autocorrelation generates two types of variables: autocorrelation (AC) between

the same property and cross-covariance (CC) between properties with different values.

It has been proved that DNA physicochemical properties play important roles in gene expression

regulation [100, 101].

There are 38 dinucleotide physicochemical properties and 12 trinucleotide physicochemical properties

listed in Table 9 and Table 10, respectively, that may be utilized to construct distinct modes of dinucleotide

and trinucleotide autocorrelation features. The present analysis was confined to dinucleotide and trin-

ucleotide autocorrelation descriptors since little physicochemical property data are available for K-tuple

nucleotides with = 4 and higher. When the necessary physicochemical property data are available,

however, the formulae described here may be simply modified to include the scenario when ≥ 4 [102].

Table 9: List of 38 physicochemical properties of dinucleotides in DNA. [102]

Number Description

1 Base stacking

2 Protein-induced deformability

3 B-DNA twist

4 Dinucleotide GC content

5 A-philicity

6 Propeller twist

7 Duplex stability (free energy)

8 Duplex stability (disrupt energy)

42

CHAPTER 4. DEVELOPMENT AND IMPLEMENTATION

9 DNA denaturation

10 Bending stiffness

11 Protein-DNA twist

12 Stabilizing energy of Z-DNA

13 Aida_BA_transition

14 Breslauer_dG

15 Breslauer_dH

16 Breslauer_dS

17 Electron interaction

18 Hartman_trans_free_energy

19 Helix-coil_transition

20 Ivanov_BA_transition

21 Lisser_BZ_transition

22 Polar_interaction

23 SantaLucia_dG

24 SantaLucia_dH

25 SantaLucia_dS

26 Sarai_flexibility

27 Stability

28 Stacking_energy

29 Sugimoto_dG

30 Sugimoto_dH

31 Sugimoto_dS

32 Watson-Crick_interaction

33 Twist

34 Tilt

35 Roll

36 Shift

37 Slide

38 Rise

43

CHAPTER 4. DEVELOPMENT AND IMPLEMENTATION

Table 10: List of 12 physicochemical properties of trinucleotides in DNA. [102]

Number Description

1 Bendability (DNase)

2 Bendability (consensus)

3 Trinucleotide GC content

4 Nucleosome positioning

5 Consensus-roll

6 Consensus-rigid

7 DNase I

8 DNase I-rigid

9 MW-daltons

10 MW-kg

11 Nucleosome

12 Nucleosome-rigid

Consider a DNA sequence � containing ! nucleic acid residues, i.e.

� = '1 '2 '3 ... '! (13)

where '8 is the nucleic acid residue at the sequence position 8 ∈ [1, 2, ..., !] and ! is the length of

the DNA sequence. The DAC evaluates the correlation of the same physicochemical index between two

dinucleotides separated by a distance of lag in the sequence. This correlation can be determined as follows:

��� (D, ;06) =
∑!−;06−1
8=1 (%D ('8 '8+1) − %D) (%D ('8+;06 '8+;06+1) − %D)

! − ;06 − 1
(14)

where D is a physicochemical index, ! is the length of the DNA sequence, %D ('8'8+1) is the numerical
value of the physicochemical index D for the dinucleotide '8'8+1 at the 8Cℎ position, and %D is the average

value for physicochemical index D in the sequence [103]. The latter is calculated as follows:

%D =

∑!−1
9=1 %D (' 9' 9+1)

! − 1
(15)

The length of DAC feature vector is # ∗ !�� , where # is the number of physicochemical indices and

!�� is the maximum of ;06, ;06 ∈ [1, 2, ..., !��] [103].

Dinucleotide-based Cross Covariance Given a DNA sequence D (Eq 13), the Dinucleotide-based

Cross Covariance (DCC) method examines the correlation between two distinct physicochemical indices

44

CHAPTER 4. DEVELOPMENT AND IMPLEMENTATION

between two dinucleotides separated by lag nucleic acids in the sequence. This correlation may be deter-

mined using:

��� (D1, D2, ;06) =
∑!−;06−1
8=1 (%D1 ('8 '8+1) − %D1) (%D2 ('8+;06 '8+;06+1) − %D2)

! − ;06 − 1
(16)

where D1, D2 are two different physicochemical indices, ! is the length of the DNA sequence,

%D1 ('8'8+1) (%D2 ('8'8+1)) is the physicochemical index value D1(D2) for the dinucleotide '8'8+1 8
Cℎ

position, and %D1 (%D2) is the average value for physicochemical index valueD1,D2 along in the sequence:

%D =

∑!−1
9=1 %D (' 9' 9+1)

! − 1
(17)

The length of DCC feature vector is # ∗ (# − 1) ∗ !�� , where # is the number of physicochemical

indices and !�� is the maximum of ;06, ;06 ∈ [1, 2, ..., !��].

Dinucleotide-based Auto-Cross Covariance Combining DAC and DCC results in Dinucleotide-based

Auto-Cross Covariance (DACC), meaning the length of the DACC vector is # ∗ # ∗ !�� , where # is the

number of physicochemical indices and !�� is the maximum of ;06, ;06 ∈ [1, 2, ..., !��].

Trinucleotide-based Auto Covariance Given a DNA sequence D (Eq. 13), the Trinucleotide-based

Cross Covariance (TCC) method examines the correlation of the same physicochemical index between two

trinucleotides separated by lag nucleic acids in the sequence. This correlation may be determined using:

)�� (;06,D) =
∑!−;06−2
8=1 (%D ('8'8+1'8+2) − %D) (%D ('8+;06'8+;06+1'8+;06+2) − %D)

! − ;06 − 2
(18)

whereD is a physicochemical index, ! is the length of the DNA sequence, %D ('8'8+1'8+2) is the numerical
value of the physicochemical index D for the trinucleotide '8'8+1'8+2 at 8Cℎ position, %D is the average

value for physicochemical index D along the whole sequence:

%D =

∑!−2
9=1 %D (' 9' 9+1' 9+2)

! − 2
(19)

The length of Trinucleotide-based Auto Covariance (TAC) feature vector is # ∗ !�� , where # is the

number of physicochemical indices and !�� is the maximum of ;06, ;06 ∈ [1, 2, ..., !��].

Trinucleotide-based Cross Covariance Given a DNA sequence D (Eq. 13), the TCC method exam-

ines the correlation of two different physicochemical indices between two trinucleotides separated by lag

nucleic acids in the sequence. This correlation may be determined using:

45

CHAPTER 4. DEVELOPMENT AND IMPLEMENTATION

)�� (D1, D2, ;06) =
∑!−;06−2
8=1 (%D1 ('8 '8+1 '8+2) − %D1) (%D2 ('8+;06 '8+;06+1 '8+;06+2) − %D2)

! − ;06 − 2
(20)

where D1, D2 are two different physicochemical indices, ! is the length of the DNA sequence,

%D1 ('8'8+1'8+2) (%D2 ('8'8+1'8+2)) is the numerical value of the physicochemical index D1(D2) for
the trinucleotide '8'8+1'8+2 at 8Cℎ position, %D1 (%D2) is the average value for physicochemical index
value D1, D2 in the sequence:

%D =

∑!−2
9=1 %D (' 9' 9+1' 9+2)

! − 2
(21)

The length of TCC feature vector is # ∗ (# − 1) ∗ !�� , where # is the number of physicochemical

indices and !�� is the maximum of ;06, ;06 ∈ [1, 2, ..., !��].

Trinucleotide-based Auto-Cross Covariance Combining TAC and TCC results in Trinucleotide-

based Auto-Cross Covariance (TACC), meaning the length of the TACC feature vector is# ∗# ∗!�� , where
is the number of physicochemical indices and !�� is the maximum of ;06, ;06 ∈ [1, 2, ..., !��].

Pseudo Dinucleotide Composition All of the mentioned techniques relied only on the composition

of nucleic acids, ignoring the influence of sequence order. Pseudo Dinucleotide Composition (PseDNC) is

an approach incorporating the contiguous local sequence-order information and the global sequence-order

information into the feature vector of the DNA sequence.

Given a DNA sequence D (Eq. 13), if the feature vector of D is formulated by its NAC, we have:

� = [5 (�) 5 (�) 5 (�) 5 ())]) (22)

where 5 (�), 5 (�), 5 (�) and 5 ()) are the normalized occurrence frequencies of the nucleotides in the
DNA sequence and the) is the transpose operator symbol. As shown by Eq. 22, all the sequence-order

information is lost when a DNA sequence is represented by NAC. If the DNC is used to represent the

DNA sequence, rather than the four components provided in 22, the associated feature vector will have

4 ∗ 4 = 16 components, as shown in the following equation.

� = [5 (��) 5 (��) ... 5 ()))]) = [51 52 ... 516]) (23)

where each element is the normalized occurrence frequency of the dinucleotide in the DNA sequence.

Eq. 23 contains the most contiguous local sequence-order information, but the formulation does not take

into account any of the global sequence-order data.

46

CHAPTER 4. DEVELOPMENT AND IMPLEMENTATION

The global sequence-order information may be included into the feature vector for the DNA sequence

using the procedure that follows.



\1 =
1

!−2
∑!−2
8=1 Θ('8'8+1, '8+1'8+2)

\2 = 1
!−3

∑!−3
8=1 Θ('8'8+1, '8+2'8+3)

\3 = 1
!−4

∑!−4
8=1 Θ('8'8+1, '8+3'8+4) (_ < !)

...

_ = 1
!−1−_

∑!−1−_
8=1 Θ('8'8+1, '8+_'8+_+1)

(24)

where \1 is the first-tier correlation factor that represents the sequence-order correlation between all the

most contiguous dinucleotides in a sequence (Figure 23A); \2, the second-tier correlation factor between

all the second most contiguous dinucleotides (Figure 23B); \3, the third-tier correlation factor between all

the third most contiguous dinucleotides (Figure 23C) and so forth [91].

In Eq. 24, the parameter _ is an integer that represents the correlation along a DNA sequence that

has the greatest counted tier, and the correlation function is provided by:

Θ('8'8+1, ' 9' 9+1) =
1
`

∑̀
D=1

[%D ('8'8+1) − %D (' 9' 9+1)]2 (25)

where ` is the number of local DNA structural features taken into account in the current investigation,

which is equal to six. %D ('8'8+1) represents the numerical value of the u-th (D = 1, 2, ..., `) DNA local
property for the dinucleotide '8'8+1 at position 8. And %D (' 9' 9+1) is the corresponding value for the
dinucleotide ' 9' 9+1 at position 9 .

Numerous lines of research have shown that certain local DNA structural properties, such as angular

parameters (twist, tilt, and roll) and translational parameters (shift, slide, and rise), play significant roles

in biological processes, including protein-DNA interactions, chromosome formation, and higher-order

organization of the genetic material [104, 105]. Listed in Table 11 are the original numerical values

for twist %1('8'8+1), tilt %2('8'8+1), roll %3('8'8+1), shift %4('8'8+1), slide %5('8'8+1), and rise

%6('8'8+1), respectively, where '8'8+1 represents the 16 possible dinucleotides. Only these six DNA

local physical structural properties were used to calculate PseDNC, explaining why ` = 6 in Eq. 25.

Prior to inserting into Eq. 25, the values listed in Table 11 were adjusted through a standard conver-

sion [106], as shown by the equation below:

%D ('8'8+1) =
%D ('8'8+1)− < %D >

(� (%D)
(26)

where the symbol <> is averaging the amount present for each of the 16 dinucleotides, (Eq. 23), and (�

is the corresponding standard deviation. Table 12 provides the normalized values of %D ('8'8+1) (D =

47

CHAPTER 4. DEVELOPMENT AND IMPLEMENTATION

R1 R2 R3 R4 R5 R6 R7 R8 RL...

Θ(R1,R2,R2,R3) Θ(R3,R4,R4,R5)

Θ(R2,R3,R3,R4) Θ(R4,R5,R5,R6)A

R1 R2 R3 R4 R5 R6 R7 R8 RL...

Θ(R1,R2,R3,R4) Θ(R4,R5,R6,R7)

Θ(R2,R3,R4,R5) Θ(R3,R4,R5,R6)B

R1 R2 R3 R4 R5 R6 R7 R8 RL...

Θ(R1,R2,R4,R5) Θ(R3,R4,R6,R7)

Θ(R2,R3,R5,R6) Θ(R4,R5,R7,R8)C

Figure 23: Correlations of dinucleotides along a DNA sequence. Adapted from [91]

48

CHAPTER 4. DEVELOPMENT AND IMPLEMENTATION

Table 11: Original numerical values for the six DNA dinucleotide physical structures [91]

Dinucleotide %1('8'8+1) %2('8'8+1) %3('8'8+1) %4('8'8+1) %5('8'8+1) %6('8'8+1)
AA 0.026 0.038 0.020 1.69 2.26 7.65

AC 0.036 0.038 0.023 1.32 3.03 8.93

AG 0.031 0.037 0.019 1.46 2.03 7.08

AT 0.033 0.036 0.022 1.03 3.83 9.07

CA 0.016 0.025 0.017 1.07 1.78 6.38

CC 0.026 0.042 0.019 1.43 1.65 8.04

CG 0.014 0.026 0.016 1.08 2.00 6.23

CT 0.031 0.037 0.019 1.46 2.03 7.08

GA 0.025 0.038 0.020 1.32 1.93 8.56

GC 0.025 0.036 0.026 1.20 2.61 9.53

GG 0.026 0.042 0.019 1.43 1.65 8.04

GT 0.036 0.038 0.023 1.32 3.03 8.93

TA 0.017 0.018 0.016 0.72 1.20 6.23

TC 0.025 0.038 0.020 1.32 1.93 8.56

TG 0.016 0.025 0.017 1.07 1.78 6.38

TT 0.026 0.038 0.020 1.69 2.26 7.65

1, 2, ..., 6) which were derived using the standard conversion calculation (Eq. 26) from the Table 11 original

values.

It is conceivable to draw the conclusion that a collection of sequence-correlation factors \1, ..., _
defined by Eq. 24 and 25, may represent the sequence-order effect of a DNA sequence. The process for

augmenting the DNC of Eq. 23 to the PseDNC is similar to that described in [107] for changing the amino

acid composition to the Pseudo Amino Acid Composition (PseACC).

� = [31 32 ... 316 316+1 ... 316+_]) (27)

where

3: =


5:∑16

8=1 58+F
∑_
9=1 \ 9

1 ≤ : ≤ 16

F\:−16∑16
8=1 58+F

∑_
9=1 \ 9

17 ≤ : ≤ 16 + _
(28)

where 5: is normalized occurrence frequency of the : -th dinucleotide in the sequence, \ 9 is given by

49

CHAPTER 4. DEVELOPMENT AND IMPLEMENTATION

Table 12: The normalized values for the six DNA dinucleotide physical structures [91]

Dinucleotide %1('8'8+1) %2('8'8+1) %3('8'8+1) %4('8'8+1) %5('8'8+1) %6('8'8+1)
AA 0.06 0.5 0.27 1.59 0.11 -0.11

AC 1.50 0.50 0.80 0.13 1.29 1.04

AG 0.78 0.36 0.09 0.68 -0.24 -0.62

AT 1.07 0.22 0.62 -1.02 2.51 1.17

CA -1.38 -1.36 -0.27 -0.86 -0.62 -1.25

CC 0.06 1.08 0.09 0.56 -0.82 0.24

CG -1.66 -1.22 -0.44 -0.82 -0.29 -1.39

CT 0.78 0.36 0.09 0.68 -0.24 -0.62

GA -0.08 0.5 0.27 0.13 -0.39 0.71

GC -0.08 0.22 1.33 -0.35 0.65 1.59

GG 0.06 1.08 0.09 0.56 -0.82 0.24

GT 1.50 0.50 0.80 0.13 1.29 1.04

TA -1.23 -2.37 -0.44 -2.24 -1.51 -1.39

TC -0.08 0.5 0.27 0.13 -0.39 0.71

TG -1.38 -1.36 -0.27 -0.86 -0.62 -1.25

TT 0.06 0.5 0.27 1.59 0.11 -0.11

Eq. 24, _ represents the number of tiers of the correlations in the sequence and F is the weight factor.

As a result, instead of a 16-dimensional vector (Eq. 23), the DNA sequence is formed by a (16 + _) − �
vector as stated in Eq. 27. The DNA sequences with very different lengths may be turned into a collection

of feature vectors with the same dimension thanks to the extra _ correlation factors, in addition to allowing

for the inclusion of significant global sequence-order effects. This last requirement is crucial since many

classification engines demand a collection of vectors with a certain number of components as input.

Pseudo K-tupler Composition Pseudo K-Tupler Composition (PseKNC) is the enhanced version of

PseDNC by adding k-tuple nucleotide composition.

Given a DNA sequence D (Eq. 13), the feature vector of D is defined:

� = [31 32 ... 34: 34:+1 ... 34:+_]
) (29)

where

50

CHAPTER 4. DEVELOPMENT AND IMPLEMENTATION

3D =


5D∑4:

8=1 58+F
∑_
9=1 \ 9

1 ≤ D ≤ 4:

F\
D−4:∑4:

8=1 58+F
∑_
9=1 \ 9

4: ≤ D ≤ 4: + _
(30)

where _ is the number of tiers of the correlations in a sequence; 5D is the normalized occurrence frequency

of the D -th dinucleotide in the sequence;F is a weight factor; \ 9 is given by:

\ 9 =
1

! − 9 − 1

!− 9−1∑
8=1

Θ('8'8+1, '8+ 9'8+ 9+1), 9 ∈ 1, 2, ..., _; _ < ! (31)

which is the 9 -tier structural correlation factor between all the 9Cℎ most contiguous dinucleotides. The

correlation function Θ('8'8+1, '8+ 9'8+ 9+1) is defined by:

Θ('8'8+1, '8+ 9'8+ 9+1) =
1
`

∑̀
E=1

[%E ('8'8+1) − %E ('8+ 9'8+ 9+1)]2 (32)

where ` is the number of physicochemical indices reflecting the local DNA structural properties (Table 12);

%E ('8'8+1) is the value of the ECℎ physicochemical indice for the dinucleotide '8'8+1 at 8Cℎ position and

%E ('8+ 9'8+ 9+1) is the corresponding value for the dinucleotide '8+ 9'8+ 9+1 at (8 + 9)Cℎ position.

4.2.2 Encoders

DNA sequences consist of continuous sequential letters from a 4-letter alphabet, and, as mentioned in

Section 3.3, it is first required to transform the string sequence into a numerical value in order to create

an input matrix for the model. However, as mentioned in Section 4.2, an additional letter was included in

the alphabet in order to fill sequences to a determined length - the letter N.

The encoders implemented were one-hot encoding, chemical encoding and k-mer one-hot encoding.

One-Hot Encoding One-hot encoding is extensively used in deep learning models and is well suited

for most models. In addition, the performance of one-hot encoding is very stable across various data sets.

However, an appropriate model is necessary to get acceptable performance. This approach preserves the

positional information of each nucleotide in sequences but disregards high-order relationships between

nucleotides and previous biological information [108].

As a result, A is encoded to (1, 0, 0, 0), C to (0, 1, 0, 0), G to (0, 0, 1, 0), T to (0, 0, 0, 1), and N to

(0, 0, 0, 0). The final vector’s dimension will be ! ∗ 4 where ! is the length of the sequence.

51

CHAPTER 4. DEVELOPMENT AND IMPLEMENTATION

Chemical Encoding The four nucleic acids each have unique chemical characteristics [109]. A and

G are purines with two ring structures, whereas C and T are pyrimidines with one ring structure. C and G

create strong hydrogen bonds while building secondary structures, whereas A and T form weak hydrogen

bonds. In terms of their chemical functionality, A and C belong to the amino group, while G and T belong

to the keto group. Accordingly, the four nucleic acids may be categorized into three separate categories

(Table 13).

Table 13: Cluster of nucleotides based on chemical properties [109]

Chemical property Class Nucleotides

Ring structure
Purine A,G

Pyrimidine C,T

Hydrogen bond
Weak A,T

Strong C,G

Functional group
Amino A,C

Keto G,T

Three coordinates (G,~, I) were utilized to represent the chemical characteristics of the four nu-

cleotides, and the values 0 and 1 were given to the coordinates in order to incorporate these attributes.

If G , ~, and I coordinates respectively represent the ring structure, the hydrogen bond, and the chemical

functionality, then each nucleotide may be encoded as (G8 , ~8 , I8), where G8 represents the ring structure,

~8 represents the hydrogen bond, and I8 represents the chemical functionality.

As a result, A is encoded to (1, 1, 1), C to (0, 0, 1), G to (1, 0, 0), T to (0, 1, 0) and N to (0, 0, 0). The

final vector’s dimension will be ! ∗ 3 where ! is the length of the sequence.

K-mer One-Hot Encoding As mentioned before, using one-hot encoding on DNA sequences solely

preserves the positional information of each nucleotide. Recent investigations, however, have shown that

including high-order dependencies among nucleotides may enhance the efficacy of DNA models [108].

To capture the dependencies, all instances are turned into image-like matrices of high-order relationships

using the k-mer encoding method.

For example, in 1-mer one-hot encoding, each nucleotide is mapped into a vector of size 5 (� =

[1, 0, 0, 0, 0]) ,� = [0, 1, 0, 0, 0]) ,� = [0, 0, 1, 0, 0]) ,) = [0, 0, 0, 1, 0]) , and # = [0, 0, 0, 0, 1])).
The 2-mer one hot encoding is based on the dependencies between two nearby nucleotides, and each

dinucleotide is mapped to a 25-dimensional vector (�� = [1, 0, 0, ..., 0]) , ..., ## = [0, 0, 0, ..., 1])).
The 3-mer one hot encoding is based on the dependencies between three nearby nucleotides, and each

trinucleotide is mapped to a 125-dimensional vector (��� = [1, 0, 0, 0, ..., 0, 0, 0, 0, 0]) , ... , ### =

[0, 0, 0, 0, ..., 0, 0, 0, 0, 0, 1])).
As a result, the final vector’s dimension will be (!−: + 1) ∗5: where ! is the length of the sequence.

52

CHAPTER 4. DEVELOPMENT AND IMPLEMENTATION

4.3 Classifiers Implementation

Following the selection of the dataset, the DNA sequence records were randomly rearranged and assigned

to the training and test/validation sets. A suitable data preprocessing strategy was selected in order to

turn the DNA sequences into a numerical representation. This format was necessary to comply with the

input requirements of the classification model, which takes only numerical data.

At this stage, there will be either a collection of pre-calculated features, the descriptors, or encoded

training data. It is worth noting that if the data is in descriptor form, only shallow ML models will be able

to train on it, while DL models need it to be in encoding form.

4.3.1 Models

The following sections will provide an insight for each one of the implemented classification models. The

process of obtaining this list of models was based on the most common choices made by the authors of

the previous studies on DNA classification (Table 7).

MLP CNN LSTM GRU CNN-LSTM CNN-GRU

Descriptors Encodings

Sequences

Figure 24: Models and their feature extraction methods.

MLP The first model is a feedforward artificial neural network called Multilayer Perceptron (MLP). This

is the only model that can take the descriptors as input data, since it is only the shallow ML model

implemented. Figure 25 shows its architecture, which was based in a Zhang et al.’s research [5], one of

the cases studies of this thesis.

nn.Linear nn.ReLU nn.Dropout nn.Linear nn.SigmoidDescriptors

Figure 25: MLP architecture.

CNN The CNN model, which was also inspired by one of this thesis’ case studies, specifically Zou et al.’s

research [110] and is depicted in Figure 26.

53

CHAPTER 4. DEVELOPMENT AND IMPLEMENTATION

nn.Linear nn.ReLU nn.Dropout nn.Linear nn.SoftmaxEncoded data nn.MaxPool1dnn.Conv1d

kernel_size = 12

stride = 1

padding = 0

dilation = 1

kernel_size = 12

stride = 5

padding = 0

dilation = 1

Figure 26: CNN architecture.

LSTM / BiLSTM This LSTM model is a simple model regarding the number of layers, but it is possible

to pass to the nn.LSTM layer a parameter called =D<_;0~4AB that specifies the number of recurrent

layers. Setting =D<_;0~4AB = 2 would result in a stacked LSTM, which would consist of two LSTMs

stacked on top of one another. The second LSTM would receive input from the first and compute the final

results. Besides, this layer can also take an argument called 1838A42C8>=0; , which determines if the LSTM

is bidirectional or not. This layer can also take a 3A>?>DC argument that introduces a dropout layer on

the outputs of each LSTM layer except the last one.

nn.LSTMEncoded data nn.Linear

num_layers

Dropout after all but
last recurrent layer

Figure 27: LSTM architecture.

GRU / BiGRU This GRU model is identical to the LSTM’s, only changing from the nn.LSTM layer to

nn.GRU one. This way it is possible to directly compare these two types of recurrent neural networks.

nn.GRUEncoded data nn.Linear

num_layers

Dropout after all but
last recurrent layer

Figure 28: GRU architecture.

CNN-LSTM / CNN-BiLSTM This model is a combination of the CNN and LSTM models. When using

the CNN model, the output of the CNN is fed into the LSTM model. The same previously mentioned

54

CHAPTER 4. DEVELOPMENT AND IMPLEMENTATION

properties of LSTM are also present (using =D<_;0~4AB to create a stacked LSTM and using 3A>?>DC to

introduce dropout layers on the outputs of each LSTM layers except the last one).

nn.Linear nn.ReLU nn.DropoutEncoded data nn.MaxPool1dnn.Conv1d

kernel_size = 12

stride = 1

padding = 0

dilation = 1

kernel_size = 12

stride = 5

padding = 0

dilation = 1

nn.LSTM nn.Linear

num_layers

Dropout after all but
last recurrent layer

Figure 29: CNN-LSTM architecture.

CNN-GRU / CNN-BiGRU This model is a combination of the CNN and GRU models. When using the

CNN model, the output of the CNN is fed into the GRU model. The same previously mentioned properties

of GRU are also present (using =D<_;0~4AB to create a stacked GRU and using 3A>?>DC to introduce

dropout layers on the outputs of each GRU layers except the last one).

nn.Linear nn.ReLU nn.DropoutEncoded data nn.MaxPool1dnn.Conv1d

kernel_size = 12

stride = 1

padding = 0

dilation = 1

kernel_size = 12

stride = 5

padding = 0

dilation = 1

nn.GRU nn.Linear

num_layers

Dropout after all but
last recurrent layer

Figure 30: CNN-GRU architecture.

4.3.2 Hyperparameter Tuning

Additionally, hyperparameter optimization was considered and applied successfully. As mentioned in

Section 2.2.1, the challenge of hyperparameter optimization is selecting the appropriate hyperparameters

for a learning algorithm. It may distinguish an ordinary model from a very accurate one. Choosing a different

learning rate or modifying the size of a network layer may have a substantial effect on the performance of

the model. Ray Tune1 is a standard tuning tool for hyperparameters [111] and it was used to complete

this task. However, before finding the best combination, it is required to define the configuration of the

Ray Tune’s search space. The implemented one can be found in Table 14.

Ray Tune will randomly choose a combination of parameters from these search areas for each trial. It will

then train manymodels in parallel and determine which has the highest performance, according to a defined

metric. Additionally, the Ray Tune’s scheduler HyperBandScheduler was used, which terminates poorly

performing trials early, using the HyperBand optimization algorithm. This is accomplished by choosing a

desired metric (loss) and measuring it at the end of each epoch. If the measure keeps worsening, reaching

a specified patience value, the trial will end immediately. This strategy was also implemented in the case

1https://docs.ray.io/en/latest/tune/

55

https://docs.ray.io/en/latest/tune/

CHAPTER 4. DEVELOPMENT AND IMPLEMENTATION

Table 14: Ray Tune’s search space.

Hyperparameter (x) Search Space Models

Hidden Size G ∈ {32, 64, 128} All

Batch Size G ∈ {16, 32, 64} All

Learning Rate G ∈ {0.0001, 0.001, 0.01} All

Dropout G ∈ {0.2, 0.3, 0.4, 0.5} All

Number of Layers G ∈ {1, 2, 3} All except MLP and CNN

when hyperparameter tuning is not being performed, using now the ReduceLROnPlateau scheduler from

PyTorch.

56

C
h
a
p
t
e
r

5
Software Integration

This section provides an overview on how the developed pre-processing tools and ML/DL models were

integrated in ProPythia and OmniumAI software platforms.

5.1 ProPythia

As mentioned in Section 1.1, ProPythia [4] is a platform devoted to the classification of peptide/protein

sequences using ML and DL, developed within the Biosystems group at CEB/ U. Minho. Included in

ProPythia are modules to read and modify sequences, calculate various types of protein descriptors,

pre-process datasets, execute feature selection and dimensionality reduction, visualize t-SNE and UMAP,

perform clustering, train and optimize ML and DL models, and make predictions using various algorithms.

ProPythia features an adjustable modular design that makes it a flexible and user-friendly tool for ML/DL

analysis of protein sequences [4]. A schematic view of the package can be seen in Figure 31.

The first main objective of this study regarding ProPythia was to extend its calculation of descriptors to

also include DNA descriptors. To accomplish this, a module (similar to the one for proteins) was developed

that can be imported by other modules to create a Python dictionary containing all calculated descriptors. As

the remaining ML steps are independent of one another, ProPythia is now capable of performing the whole

ML pipeline for DNA data. The list of implemented DNA descriptors can be found later in section 4.2.1.

The other key objective was the development of a complete DL pipeline for the classification of DNA

sequences. Although ProPythia already includes a module for DL-based classification, it was not used to

complete this step since it was not built in PyTorch, but rather in Tensorflow/Keras. The implemented

DL steps were encoding, data processing, model building and training, model evaluation, and, finally,

hyperparameter tuning.

57

CHAPTER 5. SOFTWARE INTEGRATION

Tensorflow

Scikit-Learn

Machine
Learning models

Supervised Learning

Dimensionality
Reduction

Deep Learning
models

ClusteringManifold

Model Building
and Training

Hyperparameter
Tuning

Model Validation
and Selection

Unsupervised Learning

Data

- Protein
sequences

Protein Descriptors

- handcrafted
representations based on

physicochemical properties

Protein Encoders

- numerical representations
of strings.

- E.g. one-hot encoding

Data Reading
and Validation

Pre-processing

Figure 31: Schematic representation of the modules in ProPythia [4].

These DL steps, along with the calculation of descriptors, were built as separate and independent

modules that can be used in combination with other modules, including those developed now and those

already present in ProPythia. For example, it is possible to use the new DNA encodings to train a ProPythia’s

DL model and also use ProPythia’s protein encoders to train a DL PyTorch model. Similarly, it is also

possible to use the DNA descriptors to train a ProPythia’s shallow ML model and also use ProPythia’s

protein descriptors to train a shallow ML PyTorch model.

Figure 32 provides an overview of the developed workflow.

Data

- DNA sequences

DNA Descriptors

- handcrafted
representations based on

physicochemical properties

DNA Encoders

- numerical representations
of strings.

- E.g. one-hot encoding

Data Reading and
Validation

Supervised Learning

Model Building
and Training

Hyperparameter
Tuning

Model Validation
and Selection

PyTorch

Deep Learning
models

Figure 32: Implemented workflow in ProPythia for Deep Learning DNA classifications.

Figure 33 provides a visualization of how the implemented modules of DL DNA classification is inte-

grated in Propythia. The coloured modules were the new ones implemented and the gray ones are from

ProPythia.

Both implementations of DNA descriptors and the DL pipeline had a step in common: the data reading

process. As a result, a data reading module was developed to read DNA sequences from CSV or FASTA

files. The data is then validated, which means that every letter in the sequence has to be either an A, C,

G, or T.

58

CHAPTER 5. SOFTWARE INTEGRATION

Tensorflow

Scikit-Learn

Data

- Protein sequences

Protein Descriptors

- handcrafted
representations based on

physicochemical properties

Protein Encoders

- numerical representations
of strings.

- E.g. one-hot encoding

Data Reading and
Validation

Machine
Learning models

Supervised Learning

Pre-processing

Dimensionality
Reduction

Deep Learning
models

ClusteringManifold

Data

- DNA sequences

DNA Descriptors

- handcrafted
representations based on

physicochemical properties

DNA Encoders

- numerical representations
of strings.

- E.g. one-hot encoding

Data Reading and
Validation

Model Building and
Training

Hyperparameter
Tuning

Model Validation and
Selection

PyTorch

Deep Learning
models

Unsupervised Learning

Figure 33: Integration of implemented modules in ProPythia.

5.2 OMNIA

OMNIA is the AutoML platform for bioinformatics of OmniumAI. It contains a set of methods for the analysis

of biological data. Currently, it offers tools for analyzing the data in the following categories - compounds,

proteins, metabolomics, transcriptomics, single-cell transcriptomics and text mining. An overview of this

platform is depicted in Figure 34.

OMNIA - V0.0.1

generics

single-cell-
transcriptomics

transcriptomics

metabolomics

proteins

core compounds

text-mining

Figure 34: OMNIA overview before implementations.

As it can been observed in Figure 34, there are two modules on the left called generics and core. These

are the fundamental pillars that provide structure for the whole project. The generics module contains

generic objects, such as dataframe, estimator, and model, that may be used by other packages and

59

CHAPTER 5. SOFTWARE INTEGRATION

are built using Sklearn1 and Autogluon2 libraries, which are external dependencies. Then, for the core

module, the idea was for it to include the interfaces and some generic implementations that have no

external dependencies. However, at the moment, the only feature the core has are the interfaces. The

remaining generic implementations are in generics module since they almost always rely on Sklearn or

Autogluon. In fact, core module will probably be removed from OMNIA.

The first main objective in OMNIA was similar to the ProPythia’s one, which was the creation of a

module that calculates DNA descriptors. This module would serve the same purpose of the previously

mentioned ones (proteins, metabolomics, etc), which is a tool to process, in this case, DNA sequences. The

implementation from ProPythia was re-utilized, but adapted to the OMNIA requirements and dependencies.

Then, the other key objective was the addition of DL PyTorch models, as well as the functions that

allow the OMNIA to use them. These functions include train, test, validation and data related processes,

which were also implemented with PyTorch. Both the models and the functions would be developed in

the generics module as it is expected that they will be used in all the other modules that handle different

types of biological data, such as proteins, metabolomics, etc. Identical to the previous objective, the

PyTorch models and functions were re-utilized from ProPythia, but adapted to the OMNIA requirements

and dependencies.

Figure 35 illustrates how the OMNIA platform incorporates both of these goals. It is also possible to see

the models that were already implemented and how the new ones integrate among them in the generics

module.

Then, figure 36 provides the overview of the entire platform, highlighting the implemented modules

and how they integrate in OMNIA. In a nutshell, the generics module was extended to include DL PyTorch

classifications, and an independent biological data processing was added, the genes module, that provides

the calculation of DNA descriptors.

Similar to ProPythia, it is expected that the DNA descriptors and DL models will be used in combination

with other models and biological data handling modules. For example, it is possible to use the DNA

descriptors to train an OMNIA’s shallow ML model and also use the descriptors from proteins module to

train a shallow ML PyTorch model. Likewise, it is also possible to use the DNA encoders to train a OMNIA’s

DL model and also use the encoders from the proteins module to train a DL PyTorch model.

1https://scikit-learn.org/stable/
2https://auto.gluon.ai/stable/index.html

60

CHAPTER 5. SOFTWARE INTEGRATION

OMNIA - V0.0.1

genes

feature extraction

DNA Descriptor

Auto Correlation and
Cross Covariance

Nucleic Acid
Composition

Pseudo Nucleic Acid
Composition Psycho Chemical

generics model

CNN

LSTM

GRU

CNN-LSTM

CNN-GRU

train

test

validation

Pytorch

CatBoostModel

FastTextModel

KNNModel

LGBModel

LinearModel

MultiLayerPreceptonNN

NN

FastAINN

MXNetNN

TorchNNRandomForestModel

SVMModel

VowpalWabbitModel

XGBoostModel

XTModel

Model

Model

AutoGluonModel

AutoGluonNN

prepare data

Figure 35: Modules integration in OMNIA.

feature extraction DNA Descriptor

Auto Correlation and
Cross Covariance

Nucleic Acid
Composition

Pseudo Nucleic Acid
Composition

Psycho Chemical

pipelinne

parameter

dataframe

array

prediction

transformation

estimation

validation

io

processing

dataset

sklearn

splitting

model

CNN

LSTM

GRU

CNN-LSTM

CNN-GRU

train

test

validation

Pytorch

prepare data
OMNIA - V0.0.1

core

single-cell-
transcriptomics

transcriptomics

metabolomics

proteins

generics

compounds

text-mining

genes

Figure 36: OMNIA overview after implementations.

61

C
h
a
p
t
e
r

6
Validation/Case studies

The created tools and platform are now functional for testing problems, but they have not yet been tested

in real-world scenarios. They have to be validated with real case studies in the areas of biotechnology and

health where the application of these tools is relevant. This is the purpose of this chapter.

6.1 The Datasets

In total, 2 datasets were used as case studies and Table 15 provides an overview. The last column contains

the dataset size with the number of negative and positive labels.

Table 15: Case studies.

Year Authors Title Focus Size (Negative/Positive)

2018 Zou et al. A primer on deep learn-

ing in genomics [110]

Discovery of

transcription-factor

binding sites in DNA.

1013/987

2020 Zhang et al. DeepHE [5] Predicting human es-

sential genes based on

deep learning.

12624/2010

The first dataset used was derived from a study of Zou et al. [110]. The authors addressed an important

problem in functional genomics, which is the discovery of transcription-factor binding sites in DNA. They

created a neural network capable of discovering DNA binding motifs based on the results of a test that

evaluates whether a longer DNA sequence binds to the protein or not. The dataset has 2000 DNA sequences

62

CHAPTER 6. VALIDATION/CASE STUDIES

of length 50, with 987 positive labels and 1013 negative labels. According to the experiments, the model

achieved 98% accuracy on the testing data.

The second used in this study was used in a research paper from Zhang et al. The authors tackled

the issue that the majority of essential gene prediction approaches based on ML lack the necessary

ability to handle the unbalanced learning problem that is inherent in the challenge, which may be one

reason impacting their performance. By combining features from sequencing data and protein-protein

interaction network, the authors proposed a DL-based approach, DeepHE, to predict human essential

genes. According to the experiment results, DeepHE outperformed ML models, such as SVM, Naive Bayes,

RF, and Adaboost, achieving results of 90% accuracy on the testing data.

6.2 Data Collection and Transformation

The first dataset was easily accessible. The article included a link to the accompanying CSV file containing

the sequences and their labels and no further data cleaning was required.

The second dataset was not as easily accessible. Instead of providing a CSV file, the authors specified

the names of the databases from which they got the data. They built the essential gene dataset from

the DEG database [112], and obtained the non-essential gene sequences from Ensembl database [113].

The DEG database contained 16 different human essential genes datasets, and 8256 human genes

are identified as essential in at least one of the 16 datasets. However, the authors assumed that about

10% human genes might be essential genes, and decided to build the essential gene dataset with genes

contained at least in 5 datasets, resulting in 2024 sequences.

Then, for the non-essential gene dataset, the authors only stated that they obtained the sequences

from Ensembl. However, the Ensembl database contains many different queries and options, and the

authors did not specify which ones they used. This lack of information made it difficult to obtain the exact

same dataset as the used on the paper. The only provided information is that they downloaded the dataset

from Ensembl and, if any of the 8256 annotated essential DEG genes were present in the new dataset,

they were deleted, resulting in 12697 sequences.

The attempt of replicating the paper’s non-essential genes dataset was the following:

1. The Human genes dataset was downloaded from the Ensembl 97 release, with unspliced gene and

protein coding gene type filters, which resulted in 22722 entries in a FASTA file. Each entry is a

pair of key and value, with each key being a set of 4 ids (gene stable ID, gene stable ID version,

transcript stable ID, transcript stable ID version), and the value being the sequence.

2. Similarly to the study, sequences in this dataset that also appeared in the DEG dataset were

removed, resulting in 22699 entries.

63

CHAPTER 6. VALIDATION/CASE STUDIES

3. It was noticed that the previous step hardly affected the dataset, but the sequences from DEG

dataset had an id (EMBL or HGNC ids) which was later found that refered to the gene stable ID

of the Ensembl dataset. All of the ids from the Ensembl dataset that appeared in the DEG were

removed, along with the sequences associated, resulting in 15888 entries.

4. Then, a cleaning step was performed, where sequences that repeated in the dataset or with invalid

characters were removed, resulting in 15137 entries.

As expected, the results of attempting to replicate these steps for the positive and negative datasets

were not the same to those in the study. Only 2010 sequences were retrieved for the positive dataset, while

15137 sequences were obtained for the negative dataset. The size of the positive dataset is comparable

to that of the study, but the negative still had a relevant discrepancy.

However, it is important to note that the sequences did not have the same length, unlike the two first

datasets. Figures 37 and 38 provide a visualization of the sequences length distribution in each dataset.

0 2500 5000 7500 10000 12500 15000 17500
0

20

40

60

80

100

120

140

160

Figure 37: Sequence length and its occurrence in the positive dataset.

A significant disparity in the length of the sequences was found in both datasets, especially in the

negative one. The majority of the sequences have a length between 0 and 0.1e6. To remove some data

noise, to balance the sequences length distribution and to attempt to achieve a better approximation to the

size of the study’s negative dataset, sequences that had length bigger than 0.1e6 were deleted, resulting in

12624 sequences. Even though the lengths of the positive dataset are not balanced either, no sequences

were removed because the number of sequences was already very close to the paper’s.

The final version of this dataset was 2010 positives and 12624 negatives. Even though it is not exactly

the same size of the study, it was considered a satisfactory approximation.

64

CHAPTER 6. VALIDATION/CASE STUDIES

0.0 0.5 1.0 1.5 2.0 2.5
1e6

0

1000

2000

3000

4000

5000

6000

7000

8000

Figure 38: Sequence length and its occurrence in the negative dataset.

0 20000 40000 60000 80000 100000
0

100

200

300

400

500

600

Figure 39: Sequence length and its occurrence after removing sequences bigger than 0.1e6.

65

CHAPTER 6. VALIDATION/CASE STUDIES

As mentioned in Section 4.2, the sequence feature vectors that will be fed into the model need to

have the same input shape, regardless of whether the sequences have the same length or not. Unlike

the previous datasets, this one did not have sequences with uniform length. When using descriptors, this

is not relevant, since they were implemented in a way that they are not dependent on the sequence’s

length. However, for the encodings, a length value was required, and sequences larger than that value

were trimmed, while those shorter than that value were filled with letter N’s. Figures 37 and 39 depict the

lengths distribution in the positive and negative datasets, respectively, and it can be concluded that the

lengths are significantly different between the two. Some computed statistics from the two datasets are

shown below in Table 16.

Table 16: Statistics about the positive and negative datasets.

Class Smallest length Biggest length Mean length

Negative 76 99993 25173

Positive 192 16791 1903

One approach would be setting the length to the maximum value, avoiding the cut of sequences.

Table 16 reveals, however, that it would add a significant amount of data noise to the dataset, since

the largest value (99993) is far from the mean length of both datasets. The length value was chosen to

2000 in order to reduce the number of N’s added to sequences. This way, the positive sequences did not

suffer much modifications, and most of the negative ones were trimmed. In their investigation, the authors

skipped this step since they extracted features from sequences (descriptors) and did not do any encoding

calculations.

6.3 Optimal Class Weight

Unlike the first dataset, the second one is greatly unbalanced, with 2010 positive labels and 12624 negative

ones. This can be an obstacle for the training of the model, as it is more likely to predict the negative class.

To address the uneven data distributions between the two classes, class weights were used to impose

a heavier penalty when misclassifying an instance in the minority class, which is the class of essential

genes. Experiments were conducted to determine the ideal weight assigned to each class, and can be

found below in Table 17.

As the objective is to discover the optimal class weight to train the models for the essential genes

dataset, it would be pointless to test all possible combinations of feature extractions techniques and models,

as doing so would create an enormous number of possibilities. So, there had to be a selection of feature

extractions methods as well as models to test the different weight classes. For feature extraction, only

66

CHAPTER 6. VALIDATION/CASE STUDIES

descriptors and one-hot encoding were selected, and for models, the MLP, CNN, LSTM, and GRU were

picked, as the remaining models are built using one or more of these four.

Table 17: Results of different weights in the essential genes dataset.

Model Feature Extraction Weights Accuracy MCC Confusion Matrix

MLP Descriptor 1:1 0.978 0.911

[
2485 40
23 379

]
MLP Descriptor 1:2 0.979 0.915

[
2482 43
18 384

]
MLP Descriptor 1:3 0.980 0.918

[
2487 38
20 382

]
MLP Descriptor 1:4 0.978 0.913

[
2477 48
15 387

]
CNN One-Hot 1:1 0.964 0.845

[
2478 47
59 343

]
CNN One-Hot 1:2 0.956 0.815

[
2459 66
63 339

]
CNN One-Hot 1:3 0.957 0.823

[
2454 71
54 348

]
CNN One-Hot 1:4 0.945 0.785

[
2413 112
49 353

]
LSTM One-Hot 1:1 0.974 0.899

[
2459 66
10 392

]
LSTM One-Hot 1:2 0.978 0.907

[
2490 35
30 372

]
LSTM One-Hot 1:3 0.972 0.890

[
2459 66
16 386

]
LSTM One-Hot 1:4 0.976 0.908

[
2465 60
9 393

]
GRU One-Hot 1:1 0.982 0.925

[
2497 28
24 378

]
GRU One-Hot 1:2 0.979 0.913

[
2490 35
26 376

]
GRU One-Hot 1:3 0.980 0.916

[
2485 40
20 382

]
GRU One-Hot 1:4 0.981 0.920

[
2484 41
16 386

]
By reviewing the data in Table 17, one could conclude that class weights have a minimal effect on

the performance of each model. In fact, in certain models, the best results can be achieved without any

class weight distribution at all. Due to the robustness of the models, it is reasonable to infer that the class

imbalance is not a significant concern. In addition, it can be inferred that, with the exception of the CNN

67

CHAPTER 6. VALIDATION/CASE STUDIES

model, every other model achieves roughly the same level of accuracy regardless of the weight distribution,

confirming the belief that the class imbalance is not a significant issue.

Therefore, no weight class distribution was selected for training the remaining feature extraction

techniques and model combinations in the essential genes dataset, since it was the best performing in

half of the models and also the one that obtained the highest value of MCC.

6.4 Results

To acquire the best possible results, it was necessary to test every combination of feature extraction -

model - dataset. There are a total of four types of feature extraction techniques, ten distinct models, and

two datasets. This means that, so far, 4 ∗ 10 ∗ 2 = 80 possibilities would need testing.

However, one of the feature extraction methods, the k-mer one-hot encoding, receives a parameter k

defined by the user. The number of possibilities will rapidly increase since every value of : would have to

be tested, and 0 < : < !, where ! is the length of the sequence. Given a sequence with length 2000

(sequences’ length in the essential genes dataset), the number of possibilities that would need testing would

be (3 + 2000) ∗ 10 ∗ 2 = 40060. Due to the practical impossibility of testing this number of possibilities,
a maximum value for : had to be established. It is also important to mention that the bigger the value of

: , the larger the feature vector will be. With : = 10, every word of 10 letters (AAAAAAAAAA, AAAAAAAAAT,
..., NNNNNNNNNN) had to be calculated and assigned a unique array to represent it. This would result in

9765625 possible combinations, with each one assigned to an array of also 510 = 9765625 elements
(containing exclusively zeros with the exception of a single 1 at a single position in the array). Then, the

sequence had to be separated into ! −: + 1 = 2000− 10+ 1 = 1991 10-mers and assign the respective
array of 9765625 elements, resulting in a vector size of 1991 ∗ 9765625 = 1.94410.

The time necessary to create this encoding in addition to the time required for the model to process

all of this input and train with it makes large values of : impractical. This was taken into account while

determining the maximum value of : , so that this value would be related with the maximum acceptable

amount of time to wait for classification results. Some experiments to find the maximum value of : were

performed in the essential genes dataset, which is the dataset with the largest sequences, and the CNN

model, which is the DL model with the fastest train times. They can be found below in Table 18.

As anticipated, both the size of the feature vector and the training time for the model increase expo-

nentially with the value of : . In fact, the vector size is so large that it was not possible to train the model

for : = 4 due to limited computation resources, specifically memory. Considering the results of Table 18,

it was determined that the maximum value of k would be 3.

So, at this point, there are 5 possible feature extraction methods (descriptors, one-hot, chemical, k-mer

one-hot with : = 2, and k-mer one-hot with : = 3), 10 different models and 2 datasets, resulting in

100 possibilities that would need testing. However, some of these combinations are incompatible (some

68

CHAPTER 6. VALIDATION/CASE STUDIES

Table 18: Statistics about the k-mer one-hot encoding on the essential genes dataset using the CNN model.

K Feature Vector Size of a single sequence Time to train (min)

1 (2000 − 1 + 1) ∗ 51 = 10 000 3

2 (2000 − 2 + 1) ∗ 52 = 49 975 6

3 (2000 − 3 + 1) ∗ 53 = 249 750 27

4 (2000 − 4 + 1) ∗ 54 = 1 248 125 Out of memory

models only accept encodings and vice-versa). Therefore, 74 combinations were examined, and the results

are shown below in Table 19 and in Table 20. It also worth mentioning that these results were obtained

using the cross entropy loss function, which is the default loss function to use for binary classification

problems [114], and the Adam optimizer, which is one of the most popular optimizers and was the one

used in both case studies.

Also, in unbalanced dataset problems, the accuracy is not a good indicator of the performance of

the model, since it can be easily skewed by the majority class. A dataset containing, for example, 100

sequences, 90 of which are negatively labeled and 10 of which are positively labeled, a model that always

predicts false would achieve an accuracy of 90%. However, this model would be useless in practice. The

MCC and confusion matrices were also calculated for each combination, since they are a more accurate

measure of the performance of the model.

Tables 19 and 20 only provide the accuracy metric in order to compare the results of both case studies,

but the complete results for both datasets with other metrics (MCC and confusion matrix) can be found in

the supplementary material in Appendix A (Table 22 and 23).

Analyzing both tables, it can be concluded that all feature extraction methods and models performed

well in both datasets. The results in the Primer dataset are better than the Essential Genes ones, which is

expected since the results from both studies also show that the Primer dataset is easier to classify than the

Essential Genes one (the authors from the Primer study achieved 98% accuracy and the authors from the

Essential Genes study achieved 90% accuracy). The results obtained outperformed the results from both

studies, achieving 100% accuracy on the Primer dataset using LSTM, BiLSTM, GRU and BiGRU models,

and 98% accuracy on the Essential Genes dataset using BiLSTM/3-mer one-hot combination.

The tables show that RNN (LSTM, GRU, and their variations) models are the best choice for this

problem, since they achieved the best results in both datasets. RNN models are well-known for their

capacity to process sequential data, which is most likely why these models produced the best results.

69

CHAPTER 6. VALIDATION/CASE STUDIES

Table 19: Accuracy results on Primer dataset.

Model Descriptors One-hot Chemical 2-mer one-hot 3-mer one-hot

MLP 0.958 — — — —

CNN — 0.990 0.988 0.985 0.995

LSTM — 0.998 0.998 1 1

BiLSTM — 1 1 1 1

GRU — 1 1 1 0.995

BiGRU — 0.998 1 0.993 1

CNN-LSTM — 0.978 0.985 0.990 0.998

CNN-BiLSTM — 0.988 0.960 0.995 0.998

CNN-GRU — 0.985 0.995 0.995 0.985

CNN-BiGRU — 0.993 0.990 0.995 0.998

Table 20: Accuracy results on Essential Genes dataset.

Model Descriptors One-hot Chemical 2-mer one-hot 3-mer one-hot

MLP 0.978 — — — —

CNN — 0.964 0.950 0.965 0.978

LSTM — 0.974 0.976 0.981 0.982

BiLSTM — 0.984 0.972 0.981 0.986

GRU — 0.982 0.975 0.978 0.985

BiGRU — 0.976 0.976 0.982 0.983

CNN-LSTM — 0.958 0.942 0.971 0.973

CNN-BiLSTM — 0.960 0.936 0.967 0.976

CNN-GRU — 0.963 0.943 0.970 0.978

CNN-BiGRU — 0.962 0.946 0.971 0.977

6.5 Results Reproducibility

A machine learning pipeline has several nondeterministic stages. For instance, the training and testing

sets resulting from data splitting are very likely to change across runs. This is problematic since it makes

it hard to replicate results.

However, this problem is easily tackled by using the random seed that libraries like TensorFlow and

PyTorch provide. By adjusting the random seed value, it is possible to assure that random numbers are

created consistently across runs. This concept may seem counterintuitive at first, since one could believe

70

CHAPTER 6. VALIDATION/CASE STUDIES

that adjusting the random seed would manipulate the algorithm’s randomness. This, however, is not true.

The random seed is used to guarantee that the same random numbers are produced every time, and if

the random seed value is altered, so will the random numbers. This is a highly helpful feature that can

help in reproducing the results, and it is a common practice in machine learning.

This line of thought can raise the question of how to choose the random seed value for optimal results.

The answer to this question is that there is no single answer. The random seed value must be initially set

and it is common practice to experiment with multiple values. It is, however, expected that the random

seed value will not have a significant impact on the results and that the results will be similar across

different values.

In this study, three different random seed values were tested: 24, 42, and 2022. The results from the

previous section were obtained using the random seed value of 42. To see if the results are consistent

across different random seed values, the same experiment was repeated using the other two random seed

values, but only using the MLP and CNN models to reduce the number of experiments as they are already

a good indicator of the consistency of the results. The results in the essential genes dataset are shown in

Table 21.

By analyzing Table 21, it is possible to deduce that the results obtained with the other two random

seed values were quite comparable to those obtained with random seed value 42. In addition, the best

results are obtained using the MLP model and the CNN/3-mer one-hot combination in all three seeds,

which proves the consistency of the models as well. It is thus feasible to infer that the random seed value

has no significant effect on the results.

71

CHAPTER 6. VALIDATION/CASE STUDIES

Table 21: Results on Essential Genes dataset with different seeds.

Seed Model Feature Extraction Accuracy MCC Confusion Matrix

24 MLP Descriptor 0.980 0.917

[
2495 30
28 374

]
24 CNN One-Hot 0.970 0.874

[
2482 43
44 358

]
24 CNN Chemical 0.939 0.720

[
2498 27
151 251

]
24 CNN 2-mer one-hot 0.978 0.908

[
2499 26
37 365

]
24 CNN 3-mer one-hot 0.980 0.914

[
2494 31
29 373

]
42 MLP Descriptor 0.978 0.911

[
2485 40
23 379

]
42 CNN One-Hot 0.964 0.845

[
2478 47
59 343

]
42 CNN Chemical 0.950 0.782

[
2476 49
96 306

]
42 CNN 2-mer one-hot 0.965 0.855

[
2462 63
40 362

]
42 CNN 3-mer one-hot 0.978 0.912

[
2483 42
21 381

]
2022 MLP Descriptor 0.981 0.920

[
2501 24
31 371

]
2022 CNN One-Hot 0.954 0.796

[
2488 37
98 304

]
2022 CNN Chemical 0.942 0.742

[
2464 61
110 292

]
2022 CNN 2-mer one-hot 0.972 0.877

[
2498 27
56 346

]
2022 CNN 3-mer one-hot 0.981 0.920

[
2500 25
30 372

]

72

C
h
a
p
t
e
r

7
Conclusion

7.1 Summary of the work

The main goal of this study consists in creating a solution to keep up with the exponential biomedical data

growth, which current methods involve the use of homologies, a very slow and expensive process.

The solution takes the form of a tool that uses ML and DL models to automatically classify DNA

sequences, improving response times and even classification accuracy. It is then integrated into ProPythia

and OmniumAI software platforms.

Some previous studies have been done in this field, but the objective is for the tool to generalize well

to data from different studies and sources, not just one in particular. The objectives outlined in Chapter 1

were taken into consideration when the problem’s solution was being developed.

It was required to first understand the state of the art regarding the creation of ML/DL models, in a

broad sense, and also specifically classifiers for DNA sequences. Then, for the DNA sequence classifiers,

it was also important to find the current approaches to the data preprocessing step, which is the most

crucial step of this study due to the lack of numerical properties in the sequence that the model requires.

After reviewing the state of the art, it was necessary to decide which pre-processing methods and

which ML/DL models were going to be built and used. This challenge was tackled in both situations in

the same manner, by picking the most common or best performing ones from previous studies in DNA

classification problems. Descriptors were calculated for the shallow ML models (the MLP model), as well

as encodings for the DL models (CNN, LSTM, BiLSTM, GRU, BiGRU, CNN-LSTM, CNN-BiLSTM, CNN-GRU,

and CNN-BiGRU).

Following the implementation, the next step was to integrate it into ProPythia and into OmniumAI

software platforms, in particular OMNIA. In ProPythia, the objectives were to extend its calculation of

73

CHAPTER 7. CONCLUSION

descriptors for proteins to also include DNA descriptors and also the development of a complete DL

pipeline (data reading and validation, encodings, DL models, model training and building, hyparameter

tuning and model validation and selection) for the classification of DNA sequences. Then, for OMNIA, the

objectives were similar, which were the creation of a module that calculates DNA descriptors and the

addition of DL models as well as train, test, validation and data related processes functions.

Finally, the implemented tool needed to be tested with real-world case studies. The main goal of this

step was to evaluate the performance of the implemented tool and to compare it with the state of the

art. The expected results are that the tool will be able generalize well to new data from different sources

and that it will be able to classify DNA sequences with high accuracy. The case studies were transcription

factor annotation and essential gene determination.

7.2 Discussion on the main results

The primary goal of this dissertation was to develop a tool that can automatically classify DNA sequences

using ML/DL algorithms.

This objective was materialized by the tool created, which is able to replicate and even outperform

results from relevant previous studies. It is worth mentioning that there were several decisions, regarding

the choice of important parameters and configurations, that may have impacted the outcomes, which are

listed below.

• Loss function;

• Optimizer;

• Early stopping patience;

• Sequences cutting length for the essential genes dataset;

• Number of epochs;

• Model’s architecture;

• Model’s parameters (strides, paddings);

• Hyperparameter search space;

• Number of samples in the Hyperparameter Tuning.

All of the experiments were performed with a fixed value for each one of the above parameters, because

it was not the goal of this work to find the best possible model combination, but to compare the performance

of the different pre-processing methods and models, and understand if they can generalize well. In fact, it

74

CHAPTER 7. CONCLUSION

was not feasible to experiment all the possible combinations of the above parameters, and the ones that

were chosen were the ones that were considered to be the best fit for the problem at hand. For example,

the early stopping patience value, which is the threshold for the number of epochs without improvement

in the validation loss, was set to 2 because it was observed that the model already converged at this point.

7.3 Future Work

For the future work, one of the improvements for the developed tool would be the support for multiclass

classification problems. As can be seen in Section 6.1, the datasets from the case studies are binary

classification problems, which means that the model will predict if a sequence will belong to a certain

class or not. Multiclass classification support was not thoroughly investigated due to the lack of accessible

datasets from relevant studies. However, given the tool’s level of abstraction and modularization, extending

it to handle multiclass classifications would not be a particularly laborious task. Training, testing, and metric

calculation methods are the only components that would need to be adapted for this to be implemented.

Another enhancement to the tool would be the development of a graphical user interface, such as

a publicly accessible web application. Since the only means to engage with the system is through the

command line, which needs some level of technical knowledge, it would be ideal to have an intuitive

interface that would enable all users to interact, regardless of their level of technical expertise. Most

of the DNA descriptors packages mentioned in Table 5 provide a web server to ease and enhance the

users’ experience. For instance, this web application could be implemented using the Python-based Flask1

framework for the backend, and React.js2 or Vue.js3 for the frontend. The web application would be able to

receive the DNA sequences from the users, allow them to choose the pre-processing methods and ML/DL

models, and return the results in a user-friendly format.

The last improvement would be to this research results, and not to the developed tool itself. As men-

tioned in the previously section, the experiments were performed with a fixed value for a set of parameters.

Among them, the hyperparameter search space and the number of samples in the hyperparameter tuning

are the ones with most potential to improve even further the results. The hyperparameter search space

is the set of values that the hyperparameters can take, and the number of samples is the number of

combinations of hyperparameters that will be tested. The more combinations that are tested, the more

likely it is that the best combination will be found. However, the more combinations that are tested, the

longer the hyperparameter tuning will take. Therefore, it was important to find a balance between the

number of combinations and the time it takes to perform the hyperparameter tuning. If greater computer

resources were available, it would be conceivable to obtain faster training times and to test even more

1https://flask.palletsprojects.com
2https://reactjs.org/
3https://vuejs.org/

75

https://flask.palletsprojects.com/en/2.2.x/
https://reactjs.org/
https://vuejs.org/

CHAPTER 7. CONCLUSION

combinations of hyperparameters in order to boost the results even more. The lack of computational

resources, particularly memory, was also the reason why the k-mer one-hot encoding method was not

tested for k values greater than 3, as mentioned in Section 6.4. The k-mer one-hot encoding method is the

most computationally expensive pre-processing method but also the one that obtained the best results.

Although the results were already excellent and probably could not be improved much more, it still would

be interesting to explore more tuning combinations and test the k-mer one-hot encoding method with k

values greater than 3 to see how it would impact the results.

76

Bibliography

[1] N. Auslander, A. B. Gussow, and E. V. Koonin. “Incorporating Machine Learning into Established

Bioinformatics Frameworks.” In: International Journal of Molecular Sciences 2021, Vol. 22, Page

2903 22.6 (Mar. 2021), p. 2903. issn: 14220067. doi: 10.3390/IJMS22062903. url: https:

//www.mdpi.com/1422-0067/22/6/2903/htmhttps://www.mdpi.com/1422-

0067/22/6/2903.

[2] A. Yang, W. Zhang, J. Wang, K. Yang, Y. Han, and L. Zhang. “Review on the Application of Machine

Learning Algorithms in the Sequence Data Mining of DNA.” In: Frontiers in Bioengineering and

Biotechnology 8 (Sept. 2020), p. 1032. issn: 22964185. doi: 10.3389/FBIOE.2020.01032.

[3] J. Zrimec, F. Buric, M. Kokina, V. Garcia, and A. Zelezniak. “Learning the Regulatory Code of Gene

Expression.” In: Frontiers in Molecular Biosciences 8 (June 2021), p. 530. issn: 2296889X. doi:

10.3389/FMOLB.2021.673363/BIBTEX.

[4] A. M. Sequeira, D. Lousa, and M. Rocha. “ProPythia: A Python Automated Platform for the Classi-

fication of Proteins Using Machine Learning.” In: Advances in Intelligent Systems and Computing

1240 AISC (June 2020), pp. 32–41. issn: 21945365. doi: 10.1007/978-3-030-54568-

0{_}4. url: https://link.springer.com/chapter/10.1007/978-3-030-54568-0_4.

[5] X. Zhang, W. Xiao, and W. Xiao. “DeepHE: Accurately predicting human essential genes based

on deep learning.” In: PLOS Computational Biology 16.9 (Sept. 2020), e1008229. issn: 1553-

7358. doi: 10.1371/JOURNAL.PCBI.1008229. url: https://journals.plos.org/

ploscompbiol/article?id=10.1371/journal.pcbi.1008229.

[6] D. Quang and X. Xie. “DanQ: a hybrid convolutional and recurrent deep neural network for quantify-

ing the function of DNA sequences.” In: Nucleic Acids Research 44.11 (June 2016), e107–e107.

issn: 0305-1048. doi: 10.1093/NAR/GKW226. url: https://academic.oup.com/nar/

article/44/11/e107/2468300.

[7] G. Novakovsky, M. Saraswat, O. Fornes, S. Mostafavi, and W. W. Wasserman. “Biologically relevant

transfer learning improves transcription factor binding prediction.” In: Genome biology 22.1 (Dec.

2021). issn: 1474-760X. doi: 10.1186/S13059-021-02499-5. url: https://pubmed.ncbi.

nlm.nih.gov/34579793/.

77

https://doi.org/10.3390/IJMS22062903
https://www.mdpi.com/1422-0067/22/6/2903/htm https://www.mdpi.com/1422-0067/22/6/2903
https://www.mdpi.com/1422-0067/22/6/2903/htm https://www.mdpi.com/1422-0067/22/6/2903
https://www.mdpi.com/1422-0067/22/6/2903/htm https://www.mdpi.com/1422-0067/22/6/2903
https://doi.org/10.3389/FBIOE.2020.01032
https://doi.org/10.3389/FMOLB.2021.673363/BIBTEX
https://doi.org/10.1007/978-3-030-54568-0{_}4
https://doi.org/10.1007/978-3-030-54568-0{_}4
https://link.springer.com/chapter/10.1007/978-3-030-54568-0_4
https://doi.org/10.1371/JOURNAL.PCBI.1008229
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008229
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008229
https://doi.org/10.1093/NAR/GKW226
https://academic.oup.com/nar/article/44/11/e107/2468300
https://academic.oup.com/nar/article/44/11/e107/2468300
https://doi.org/10.1186/S13059-021-02499-5
https://pubmed.ncbi.nlm.nih.gov/34579793/
https://pubmed.ncbi.nlm.nih.gov/34579793/

BIBLIOGRAPHY

[8] Total data volume worldwide 2010-2025 | Statista. url: https : / / www . statista . com /

statistics/871513/worldwide-data-created/.

[9] IBM Cloud Education. What is Machine Learning? url: https://www.ibm.com/cloud/learn/

machine-learning.

[10] M. Luckert and M. Schaefer-Kehnert. “Using Machine Learning Methods for Evaluating the Quality

of Technical Documents.” In: (2016). url: http://urn.kb.se/resolve?urn=urn:nbn:se:

lnu:diva-52087.

[11] A. L. Samuel. “Some Studies in Machine Learning Using the Game of Checkers.” In: undefined

3.3 (July 1959), pp. 210–229. issn: 0018-8646. doi: 10.1147/RD.33.0210. url: http:

//ieeexplore.ieee.org/document/5392560/.

[12] S. Kassel. “Predicting Building Code Compliance with Machine Learning Models | Azavea.” In:

(Sept. 2017). url: https://www.azavea.com/blog/2017/09/21/building-inspection-

prediction/.

[13] Machine Learning Glossary | Google Developers. url: https://developers.google.com/

machine-learning/glossary.

[14] S. M. Karazi, M. Moradi, and K. Y. Benyounis. “Statistical and Numerical Approaches for Modeling

and Optimizing Laser Micromachining Process-Review.” English. In: Reference Module in Mate-

rials Science and Materials Engineering. Reference Module in Materials Science and Materials

Engineering. Netherlands: Elsevier, 2019. doi: 10.1016/B978-0-12-803581-8.11650-9. url:

https://linkinghub.elsevier.com/retrieve/pii/B9780128035818116509.

[15] M. G. Omran, A. P. Engelbrecht, and A. Salman. “An overview of clustering methods.” In: Intelligent

Data Analysis 11.6 (2007), pp. 583–605. issn: 15714128. doi: 10.3233/IDA-2007-11602.

[16] L. Van Der Maaten, E. Postma, J. den Herik, and others. “Dimensionality reduction: a comparative.”

In: J Mach Learn Res 10.66-71 (2009), p. 13. url: https://members.loria.fr/moberger/

Enseignement/AVR/Exposes/TR_Dimensiereductie.pdf.

[17] A. Beck and M. Kurz. A Perspective on Machine Learning Methods in Turbulence Modelling. Nov.

2020. doi: 10.13140/RG.2.2.17469.69608.

[18] J. Chugh. Types of Machine Learning and Top 10 Algorithms Everyone Should Know. Dec. 2018.

url: https://blogs.oracle.com/ai-and-datascience/post/types-of-machine-

learning-and-top-10-algorithms-everyone-should-know.

[19] What is Unsupervised Learning? | IBM. Sept. 2020. url: https://www.ibm.com/cloud/

learn/unsupervised-learning?mhsrc=ibmsearch_a&mhq=unsupervised%20learning.

78

https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.ibm.com/cloud/learn/machine-learning
https://www.ibm.com/cloud/learn/machine-learning
http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-52087
http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-52087
https://doi.org/10.1147/RD.33.0210
http://ieeexplore.ieee.org/document/5392560/
http://ieeexplore.ieee.org/document/5392560/
https://www.azavea.com/blog/2017/09/21/building-inspection-prediction/
https://www.azavea.com/blog/2017/09/21/building-inspection-prediction/
https://developers.google.com/machine-learning/glossary
https://developers.google.com/machine-learning/glossary
https://doi.org/10.1016/B978-0-12-803581-8.11650-9
https://linkinghub.elsevier.com/retrieve/pii/B9780128035818116509
https://doi.org/10.3233/IDA-2007-11602
https://members.loria.fr/moberger/Enseignement/AVR/Exposes/TR_Dimensiereductie.pdf
https://members.loria.fr/moberger/Enseignement/AVR/Exposes/TR_Dimensiereductie.pdf
https://doi.org/10.13140/RG.2.2.17469.69608
https://blogs.oracle.com/ai-and-datascience/post/types-of-machine-learning-and-top-10-algorithms-everyone-should-know
https://blogs.oracle.com/ai-and-datascience/post/types-of-machine-learning-and-top-10-algorithms-everyone-should-know
https://www.ibm.com/cloud/learn/unsupervised-learning?mhsrc=ibmsearch_a&mhq=unsupervised%20learning
https://www.ibm.com/cloud/learn/unsupervised-learning?mhsrc=ibmsearch_a&mhq=unsupervised%20learning

BIBLIOGRAPHY

[20] R. Beaumont. Image embeddings | Medium. July 2020. url: https://rom1504.medium.com/

image-embeddings-ed1b194d113e.

[21] L. Patcher. What is principal component analysis? | Bits of DNA. May 2014. url: https :

//liorpachter.wordpress.com/2014/05/26/what-is-principal-component-

analysis/.

[22] Q. Liu and Y. Wu. “Supervised Learning.” In: Encyclopedia of the Sciences of Learning (2012),

pp. 3243–3245. doi: 10.1007/978-1-4419-1428-6{_}451. url: https://link.

springer.com/referenceworkentry/10.1007/978-1-4419-1428-6_451.

[23] I. H. Sarker. “Machine Learning: Algorithms, Real-World Applications and Research Directions.”

In: SN Computer Science 2021 2:3 2.3 (Mar. 2021), pp. 1–21. issn: 2661-8907. doi: 10.1007/

S42979-021-00592-X. url: https://link.springer.com/article/10.1007/s42979-

021-00592-x.

[24] Y. Matanga. “Analysis of Control Attainment in Endogenous Electroencephalogram Based Brain

Computer Interfaces.” Doctoral dissertation. Nov. 2017. doi: 10.13140/RG.2.2.10493.05608.

[25] V. R. Joseph and A. Vakayil. “SPlit: An Optimal Method for Data Splitting.” In: Technometrics

(Dec. 2020). doi: 10.1080/00401706.2021.1921037. url: http://arxiv.org/abs/2012.

10945http://dx.doi.org/10.1080/00401706.2021.1921037.

[26] Y. Liu, Y. Zhou, S. Wen, and C. Tang. “A Strategy on Selecting Performance Metrics for Classifier

Evaluation.” In: International Journal of Mobile Computing and Multimedia Communications 6.4

(Oct. 2014), pp. 20–35. issn: 19379404. doi: 10.4018/IJMCMC.2014100102. url: https:

//www.researchgate.net/publication/291600681_A_Strategy_on_Selecting_

Performance_Metrics_for_Classifier_Evaluation.

[27] A. Botchkarev. “Performance Metrics (Error Measures) in Machine Learning Regression, Fore-

casting and Prognostics: Properties and Typology.” In: Interdisciplinary Journal of Information,

Knowledge, and Management 14 (Sept. 2018), pp. 45–76. doi: 10.28945/4184. url: http:

//arxiv.org/abs/1809.03006http://dx.doi.org/10.28945/4184.

[28] What is Supervised Learning? | IBM. Aug. 2020. url: https://www.ibm.com/cloud/learn/

supervised-learning.

[29] A. Worster, J. Fan, and A. Ismaila. “Understanding linear and logistic regression analyses.” In:

Canadian Journal of Emergency Medicine 9.2 (2007), pp. 111–113. issn: 14818035. doi: 10.

1017/S1481803500014883.

79

https://rom1504.medium.com/image-embeddings-ed1b194d113e
https://rom1504.medium.com/image-embeddings-ed1b194d113e
https://liorpachter.wordpress.com/2014/05/26/what-is-principal-component-analysis/
https://liorpachter.wordpress.com/2014/05/26/what-is-principal-component-analysis/
https://liorpachter.wordpress.com/2014/05/26/what-is-principal-component-analysis/
https://doi.org/10.1007/978-1-4419-1428-6{_}451
https://link.springer.com/referenceworkentry/10.1007/978-1-4419-1428-6_451
https://link.springer.com/referenceworkentry/10.1007/978-1-4419-1428-6_451
https://doi.org/10.1007/S42979-021-00592-X
https://doi.org/10.1007/S42979-021-00592-X
https://link.springer.com/article/10.1007/s42979-021-00592-x
https://link.springer.com/article/10.1007/s42979-021-00592-x
https://doi.org/10.13140/RG.2.2.10493.05608
https://doi.org/10.1080/00401706.2021.1921037
http://arxiv.org/abs/2012.10945 http://dx.doi.org/10.1080/00401706.2021.1921037
http://arxiv.org/abs/2012.10945 http://dx.doi.org/10.1080/00401706.2021.1921037
https://doi.org/10.4018/IJMCMC.2014100102
https://www.researchgate.net/publication/291600681_A_Strategy_on_Selecting_Performance_Metrics_for_Classifier_Evaluation
https://www.researchgate.net/publication/291600681_A_Strategy_on_Selecting_Performance_Metrics_for_Classifier_Evaluation
https://www.researchgate.net/publication/291600681_A_Strategy_on_Selecting_Performance_Metrics_for_Classifier_Evaluation
https://doi.org/10.28945/4184
http://arxiv.org/abs/1809.03006 http://dx.doi.org/10.28945/4184
http://arxiv.org/abs/1809.03006 http://dx.doi.org/10.28945/4184
https://www.ibm.com/cloud/learn/supervised-learning
https://www.ibm.com/cloud/learn/supervised-learning
https://doi.org/10.1017/S1481803500014883
https://doi.org/10.1017/S1481803500014883

BIBLIOGRAPHY

[30] V. Nasteski. “An overview of the supervised machine learning methods.” In: HORIZONS.B 4 (Dec.

2017), pp. 51–62. issn: 18578578. doi: 10 . 20544 / HORIZONS . B . 04 . 1 . 17 . P05. url:

https://www.researchgate.net/publication/328146111_An_overview_of_the_

supervised_machine_learning_methods.

[31] H. Belyadi and A. Haghighat. “Supervised learning.” In: Machine Learning Guide for Oil and Gas

Using Python (Jan. 2021), pp. 169–295. doi: 10.1016/B978-0-12-821929-4.00004-4.

[32] A. Bronshtein. A Quick Introduction to K-Nearest Neighbors Algorithm | by Adi Bronshtein |

Medium. Apr. 2017. url: https://medium.com/@adi.bronshtein/a-quick-introduction-

to-k-nearest-neighbors-algorithm-62214cea29c7.

[33] B. Mahesh. “Machine Learning Algorithms -A Review.” In: (Nov. 2019). doi: 10.21275/ART20203995.

url: https://www.researchgate.net/publication/344717762_Machine_Learning_

Algorithms_-A_Review.

[34] Máquina de vetores de suporte (SVM) explicada. url: https://ichi.pro/pt/maquina-de-

vetores-de-suporte-svm-explicada-97743104690915.

[35] L. Tan. “Code Comment Analysis for Improving Software Quality.” In: The Art and Science of

Analyzing Software Data (Jan. 2015), pp. 493–517. doi: 10.1016/B978-0-12-411519-

4.00017-3.

[36] M. Imran and S. A. Alsuhaibani. “A Neuro-Fuzzy Inference Model for Diabetic Retinopathy Classifi-

cation.” In: Intelligent Data Analysis for Biomedical Applications. Elsevier, Jan. 2019, pp. 147–172.

doi: 10.1016/B978-0-12-815553-0.00007-0. url: https://linkinghub.elsevier.

com/retrieve/pii/B9780128155530000070.

[37] P. Baheti. 12 Types of Neural Networks Activation Functions: How to Choose? url: https://

www.v7labs.com/blog/neural-networks-activation-functions.

[38] “Artificial neural networks.” In: Neural Networks Modeling and Control (Jan. 2020), pp. 117–124.

doi: 10.1016/B978-0-12-817078-6.00016-7. url: https://linkinghub.elsevier.

com/retrieve/pii/B9780128170786000167.

[39] C. Enyinna Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall. “Activation Functions: Comparison

of trends in Practice and Research for Deep Learning.” In: (Nov. 2018). issn: 2331-8422. url:

https://arxiv.org/abs/1811.03378v1.

[40] A. G. Farizawani, M. Puteh, Y. Marina, and A. Rivaie. “A review of artificial neural network learn-

ing rule based on multiple variant of conjugate gradient approaches.” In: Journal of Physics:

Conference Series 1529.2 (Apr. 2020), p. 022040. issn: 1742-6596. doi: 10.1088/1742-

6596/1529/2/022040. url: https://iopscience.iop.org/article/10.1088/1742-

80

https://doi.org/10.20544/HORIZONS.B.04.1.17.P05
https://www.researchgate.net/publication/328146111_An_overview_of_the_supervised_machine_learning_methods
https://www.researchgate.net/publication/328146111_An_overview_of_the_supervised_machine_learning_methods
https://doi.org/10.1016/B978-0-12-821929-4.00004-4
https://medium.com/@adi.bronshtein/a-quick-introduction-to-k-nearest-neighbors-algorithm-62214cea29c7
https://medium.com/@adi.bronshtein/a-quick-introduction-to-k-nearest-neighbors-algorithm-62214cea29c7
https://doi.org/10.21275/ART20203995
https://www.researchgate.net/publication/344717762_Machine_Learning_Algorithms_-A_Review
https://www.researchgate.net/publication/344717762_Machine_Learning_Algorithms_-A_Review
https://ichi.pro/pt/maquina-de-vetores-de-suporte-svm-explicada-97743104690915
https://ichi.pro/pt/maquina-de-vetores-de-suporte-svm-explicada-97743104690915
https://doi.org/10.1016/B978-0-12-411519-4.00017-3
https://doi.org/10.1016/B978-0-12-411519-4.00017-3
https://doi.org/10.1016/B978-0-12-815553-0.00007-0
https://linkinghub.elsevier.com/retrieve/pii/B9780128155530000070
https://linkinghub.elsevier.com/retrieve/pii/B9780128155530000070
https://www.v7labs.com/blog/neural-networks-activation-functions
https://www.v7labs.com/blog/neural-networks-activation-functions
https://doi.org/10.1016/B978-0-12-817078-6.00016-7
https://linkinghub.elsevier.com/retrieve/pii/B9780128170786000167
https://linkinghub.elsevier.com/retrieve/pii/B9780128170786000167
https://arxiv.org/abs/1811.03378v1
https://doi.org/10.1088/1742-6596/1529/2/022040
https://doi.org/10.1088/1742-6596/1529/2/022040
https://iopscience.iop.org/article/10.1088/1742-6596/1529/2/022040 https://iopscience.iop.org/article/10.1088/1742-6596/1529/2/022040/meta
https://iopscience.iop.org/article/10.1088/1742-6596/1529/2/022040 https://iopscience.iop.org/article/10.1088/1742-6596/1529/2/022040/meta
https://iopscience.iop.org/article/10.1088/1742-6596/1529/2/022040 https://iopscience.iop.org/article/10.1088/1742-6596/1529/2/022040/meta

BIBLIOGRAPHY

6596/1529/2/022040https://iopscience.iop.org/article/10.1088/1742-

6596/1529/2/022040/meta.

[41] G. Kim and D. S. Jeong. “CBP: Backpropagation with constraint on weight precision using a pseudo-

Lagrange multiplier method.” In: (Oct. 2021). url: https://arxiv.org/abs/2110.02550v2.

[42] W. S. Alaloul and A. H. Qureshi. “Data Processing Using Artificial Neural Networks.” In: Dynamic

Data Assimilation - Beating the Uncertainties (May 2020). doi: 10.5772/INTECHOPEN.91935.

url: https://www.intechopen.com/chapters/71673.

[43] J. Schmidhuber. “Deep learning in neural networks: An overview.” In: Neural Networks 61 (Jan.

2015), pp. 85–117. issn: 0893-6080. doi: 10.1016/J.NEUNET.2014.09.003.

[44] I. Shafkat. Intuitively Understanding Convolutions for Deep Learning. June 2018. url: https:

/ / towardsdatascience . com / intuitively - understanding - convolutions - for -

deep-learning-1f6f42faee1.

[45] N. Chauhan. “Optimization Algorithms in Neural Networks.” In: (Dec. 2020). url: https://www.

kdnuggets.com/2020/12/optimization-algorithms-neural-networks.html.

[46] I. Amir, T. Koren, and R. Livni. “SGD Generalizes Better Than GD (And Regularization Doesn’t

Help).” In: (Feb. 2021). url: https://arxiv.org/abs/2102.01117v2.

[47] H. Kim, K. Nonlaopon, and J. Rho. “Easy Access to the Update of Weight in Backpropagation

Algorithm.” In: 16.2 (2021), pp. 801–804. url: https://www.ripublication.com/adsa21/

v16n2p30.pdf.

[48] J. Brownlee. How to Avoid Overfitting in Deep Learning Neural Networks. Aug. 2019. url: https:

//machinelearningmastery.com/introduction-to-regularization-to-reduce-

overfitting-and-improve-generalization-error/.

[49] A. Y. Ng. “Feature selection, L 1 vs. L 2 regularization, and rotational invariance.” In: (). url:

https://icml.cc/Conferences/2004/proceedings/papers/354.pdf.

[50] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. “Dropout: A Simple

Way to Prevent Neural Networks from Overfitting.” In: Journal of Machine Learning Research

15.56 (2014), pp. 1929–1958. issn: 1533-7928. url: http://jmlr.org/papers/v15/

srivastava14a.html.

[51] N. Ganatra and A. Patel. “A Comprehensive Study of Deep Learning Architectures, Applications and

Tools.” In: International Journal of Computer Sciences and Engineering 6 (Dec. 2018), pp. 701–

705. doi: 10.26438/ijcse/v6i12.701705.

81

https://iopscience.iop.org/article/10.1088/1742-6596/1529/2/022040 https://iopscience.iop.org/article/10.1088/1742-6596/1529/2/022040/meta
https://iopscience.iop.org/article/10.1088/1742-6596/1529/2/022040 https://iopscience.iop.org/article/10.1088/1742-6596/1529/2/022040/meta
https://iopscience.iop.org/article/10.1088/1742-6596/1529/2/022040 https://iopscience.iop.org/article/10.1088/1742-6596/1529/2/022040/meta
https://iopscience.iop.org/article/10.1088/1742-6596/1529/2/022040 https://iopscience.iop.org/article/10.1088/1742-6596/1529/2/022040/meta
https://arxiv.org/abs/2110.02550v2
https://doi.org/10.5772/INTECHOPEN.91935
https://www.intechopen.com/chapters/71673
https://doi.org/10.1016/J.NEUNET.2014.09.003
https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1
https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1
https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1
https://www.kdnuggets.com/2020/12/optimization-algorithms-neural-networks.html
https://www.kdnuggets.com/2020/12/optimization-algorithms-neural-networks.html
https://arxiv.org/abs/2102.01117v2
https://www.ripublication.com/adsa21/v16n2p30.pdf
https://www.ripublication.com/adsa21/v16n2p30.pdf
https://machinelearningmastery.com/introduction-to-regularization-to-reduce-overfitting-and-improve-generalization-error/
https://machinelearningmastery.com/introduction-to-regularization-to-reduce-overfitting-and-improve-generalization-error/
https://machinelearningmastery.com/introduction-to-regularization-to-reduce-overfitting-and-improve-generalization-error/
https://icml.cc/Conferences/2004/proceedings/papers/354.pdf
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.26438/ijcse/v6i12.701705

BIBLIOGRAPHY

[52] S. Madhavan and M. T. Jones. Deep learning architectures – IBM Developer. Jan. 2021. url:

https://developer.ibm.com/articles/cc-machine-learning-deep-learning-

architectures/.

[53] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi. “Convolutional neural networks: an overview

and application in radiology.” In: Insights into Imaging 2018 9:4 9.4 (June 2018), pp. 611–629.

issn: 1869-4101. doi: 10.1007/S13244-018-0639-9. url: https://insightsimaging.

springeropen.com/articles/10.1007/s13244-018-0639-9.

[54] A. Shewalkar, D. Nyavanandi, and S. A. Ludwig. “Performance Evaluation Of Deep Neural Networks

Applied To Speech Recognition: RNN, LSTM And GRU.” In: JAISCR 9.4 (2019), p. 235. doi:

10.2478/jaiscr-2019-0006.

[55] A. N. Shewalkar. “Comparison Of RNN, LSTM And GRU On Speech Recognition Data.” In: ().

[56] D. Gupta. Recurrent Neural Network | Fundamentals Of Deep Learning. Dec. 2017. url: https:

//www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-

networks/.

[57] A. Khan and A. Sarfaraz. “RNN-LSTM-GRU based language transformation.” In: Soft Computing

23.24 (Dec. 2019), pp. 13007–13024. issn: 14337479. doi: 10.1007/S00500-019-04281-

Z/FIGURES/15. url: https://link.springer.com/article/10.1007/s00500-019-

04281-z.

[58] W. H. Lopez Pinaya, S. Vieira, R. Garcia-Dias, and A. Mechelli. “Autoencoders.” In: Machine

Learning: Methods and Applications to Brain Disorders (Mar. 2020), pp. 193–208. doi: 10.

1016/B978-0-12-815739-8.00011-0. url: https://arxiv.org/abs/2003.05991v2.

[59] S. Abirami and P. Chitra. “Energy-efficient edge based real-time healthcare support system.” In:

Advances in Computers 117.1 (Jan. 2020), pp. 339–368. issn: 0065-2458. doi: 10.1016/BS.

ADCOM.2019.09.007.

[60] J. Waring, C. Lindvall, and R. Umeton. “Automated machine learning: Review of the state-of-

the-art and opportunities for healthcare.” In: Artificial Intelligence in Medicine 104 (Apr. 2020),

p. 101822. issn: 0933-3657. doi: 10.1016/J.ARTMED.2020.101822.

[61] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. “Auto-WEKA: Combined Selection and

Hyperparameter Optimization of Classification Algorithms.” In: ().

[62] L. Zimmer, M. Lindauer, and F. Hutter. “Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for

Efficient and Robust AutoDL.” In: IEEE Transactions on Pattern Analysis and Machine Intelligence

43.9 (June 2020), pp. 3079–3090. issn: 19393539. doi: 10.48550/arxiv.2006.13799. url:

https://arxiv.org/abs/2006.13799v3.

82

https://developer.ibm.com/articles/cc-machine-learning-deep-learning-architectures/
https://developer.ibm.com/articles/cc-machine-learning-deep-learning-architectures/
https://doi.org/10.1007/S13244-018-0639-9
https://insightsimaging.springeropen.com/articles/10.1007/s13244-018-0639-9
https://insightsimaging.springeropen.com/articles/10.1007/s13244-018-0639-9
https://doi.org/10.2478/jaiscr-2019-0006
https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/
https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/
https://www.analyticsvidhya.com/blog/2017/12/introduction-to-recurrent-neural-networks/
https://doi.org/10.1007/S00500-019-04281-Z/FIGURES/15
https://doi.org/10.1007/S00500-019-04281-Z/FIGURES/15
https://link.springer.com/article/10.1007/s00500-019-04281-z
https://link.springer.com/article/10.1007/s00500-019-04281-z
https://doi.org/10.1016/B978-0-12-815739-8.00011-0
https://doi.org/10.1016/B978-0-12-815739-8.00011-0
https://arxiv.org/abs/2003.05991v2
https://doi.org/10.1016/BS.ADCOM.2019.09.007
https://doi.org/10.1016/BS.ADCOM.2019.09.007
https://doi.org/10.1016/J.ARTMED.2020.101822
https://doi.org/10.48550/arxiv.2006.13799
https://arxiv.org/abs/2006.13799v3

BIBLIOGRAPHY

[63] R. S. Olson, O. Edu, and J. H. Moore. “TPOT: A Tree-based Pipeline Optimization Tool for Automat-

ing Machine Learning.” In: 64 (2016), pp. 66–74. url: https://github.com/rhiever/tpot.

[64] H. Jin, Q. Song, and X. Hu. “Auto-Keras: An Efficient Neural Architecture Search System.” In:

Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining (June 2018), pp. 1946–1956. doi: 10 . 48550 / arxiv . 1806 . 10282. url: https :

//arxiv.org/abs/1806.10282v3.

[65] N. Jonsson. “Ways to use Machine Learning approaches for software development.” In: ().

[66] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,

L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B.

Steiner, L. Fang, J. Bai, and S. Chintala. “PyTorch: An Imperative Style, High-Performance Deep

Learning Library.” In: Advances in Neural Information Processing Systems 32 (Dec. 2019). issn:

10495258. url: https://arxiv.org/abs/1912.01703v1.

[67] DNA Sequencing Fact Sheet. Aug. 2020. url: https://www.genome.gov/about-genomics/

fact-sheets/DNA-Sequencing-Fact-Sheet.

[68] The Human Genome Project. url: https://www.genome.gov/human-genome-project.

[69] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. “Basic local alignment search

tool.” In: Journal of molecular biology 215.3 (1990), pp. 403–410. issn: 0022-2836. doi: 10.

1016/S0022-2836(05)80360-2. url: https://pubmed.ncbi.nlm.nih.gov/2231712/.

[70] W. R. Pearson and D. J. Lipman. “Improved tools for biological sequence comparison.” In: Pro-

ceedings of the National Academy of Sciences of the United States of America 85.8 (1988),

pp. 2444–2448. issn: 0027-8424. doi: 10.1073/PNAS.85.8.2444. url: https://pubmed.

ncbi.nlm.nih.gov/3162770/.

[71] G. Lo Bosco and M. A. Di Gangi. “Deep learning architectures for DNA sequence classification.” In:

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics). Vol. 10147 LNAI. 2017. doi: 10.1007/978-3-319-52962-

2{_}14. url: https://link.springer.com/chapter/10.1007%2F978-3-319-52962-

2_14.

[72] B. Liu. “BioSeq-Analysis: a platform for DNA, RNA and protein sequence analysis based onmachine

learning approaches.” In: Briefings in bioinformatics 20.4 (Mar. 2017), pp. 1280–1294. issn:

1477-4054. doi: 10.1093/BIB/BBX165. url: https://pubmed.ncbi.nlm.nih.gov/

29272359/.

83

https://github.com/rhiever/tpot
https://doi.org/10.48550/arxiv.1806.10282
https://arxiv.org/abs/1806.10282v3
https://arxiv.org/abs/1806.10282v3
https://arxiv.org/abs/1912.01703v1
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Fact-Sheet
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Fact-Sheet
https://www.genome.gov/human-genome-project
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://pubmed.ncbi.nlm.nih.gov/2231712/
https://doi.org/10.1073/PNAS.85.8.2444
https://pubmed.ncbi.nlm.nih.gov/3162770/
https://pubmed.ncbi.nlm.nih.gov/3162770/
https://doi.org/10.1007/978-3-319-52962-2{_}14
https://doi.org/10.1007/978-3-319-52962-2{_}14
https://link.springer.com/chapter/10.1007%2F978-3-319-52962-2_14
https://link.springer.com/chapter/10.1007%2F978-3-319-52962-2_14
https://doi.org/10.1093/BIB/BBX165
https://pubmed.ncbi.nlm.nih.gov/29272359/
https://pubmed.ncbi.nlm.nih.gov/29272359/

BIBLIOGRAPHY

[73] Z. Chen, P. Zhao, F. Li, T. T. Marquez-Lago, A. Leier, J. Revote, Y. Zhu, D. R. Powell, T. Akutsu,

G. I. Webb, K. C. Chou, A. I. Smith, R. J. Daly, J. Li, and J. Song. “iLearn: an integrated platform

and meta-learner for feature engineering, machine-learning analysis and modeling of DNA, RNA

and protein sequence data.” In: Briefings in bioinformatics 21.3 (May 2019), pp. 1047–1057.

issn: 1477-4054. doi: 10.1093/BIB/BBZ041. url: https://pubmed.ncbi.nlm.nih.gov/

31067315/.

[74] J. Dong, Z. J. Yao, L. Zhang, F. Luo, Q. Lin, A. P. Lu, A. F. Chen, and D. S. Cao. “PyBioMed: a

python library for various molecular representations of chemicals, proteins and DNAs and their

interactions.” In: Journal of Cheminformatics 10.1 (Dec. 2018), pp. 1–11. issn: 17582946. doi:

10.1186/S13321-018-0270-2/TABLES/5. url: https://jcheminf.biomedcentral.

com/articles/10.1186/s13321-018-0270-2.

[75] R. P. Bonidia, D. S. Domingues, D. S. Sanches, and A. C. P. L. F. de Carvalho. “MathFeature:

feature extraction package for DNA, RNA and protein sequences based on mathematical de-

scriptors.” In: Briefings in Bioinformatics 2021.0 (Nov. 2021), pp. 1–10. issn: 1467-5463. doi:

10.1093/BIB/BBAB434. url: https://academic.oup.com/bib/advance-article/doi/

10.1093/bib/bbab434/6423525.

[76] B. Liu, F. Liu, L. Fang, X. Wang, and K. C. Chou. “repDNA: a Python package to generate various

modes of feature vectors for DNA sequences by incorporating user-defined physicochemical prop-

erties and sequence-order effects.” In: Bioinformatics 31.8 (Apr. 2014), pp. 1307–1309. issn:

1367-4803. doi: 10.1093/BIOINFORMATICS/BTU820. url: https://academic.oup.com/

bioinformatics/article/31/8/1307/213091.

[77] J. Dong, Z. J. Yao, M. Wen, M. F. Zhu, N. N. Wang, H. Y. Miao, A. P. Lu, W. B. Zeng, and D. S.

Cao. “BioTriangle: A web-accessible platform for generating various molecular representations

for chemicals, proteins, DNAs/RNAs and their interactions.” In: Journal of Cheminformatics 8.1

(June 2016), pp. 1–13. issn: 17582946. doi: 10.1186/S13321-016-0146-2/FIGURES/5.

url: https://jcheminf.biomedcentral.com/articles/10.1186/s13321-016-0146-2.

[78] R. Nikam and M. M. Gromiha. “Seq2Feature: a comprehensive web-based feature extraction

tool.” In: Bioinformatics 35.22 (Nov. 2019), pp. 4797–4799. issn: 1367-4803. doi: 10.1093/

BIOINFORMATICS/BTZ432. url: https://academic.oup.com/bioinformatics/article/

35/22/4797/5499130.

[79] R. Muhammod, S. Ahmed, D. M. Farid, S. Shatabda, A. Sharma, and A. Dehzangi. “PyFeat: a

Python-based effective feature generation tool for DNA, RNA and protein sequences.” In: Bioinfor-

matics 35.19 (Oct. 2019), pp. 3831–3833. issn: 1367-4803. doi: 10.1093/BIOINFORMATICS/

BTZ165. url: https://academic.oup.com/bioinformatics/article/35/19/3831/

5372339.

84

https://doi.org/10.1093/BIB/BBZ041
https://pubmed.ncbi.nlm.nih.gov/31067315/
https://pubmed.ncbi.nlm.nih.gov/31067315/
https://doi.org/10.1186/S13321-018-0270-2/TABLES/5
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-018-0270-2
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-018-0270-2
https://doi.org/10.1093/BIB/BBAB434
https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbab434/6423525
https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbab434/6423525
https://doi.org/10.1093/BIOINFORMATICS/BTU820
https://academic.oup.com/bioinformatics/article/31/8/1307/213091
https://academic.oup.com/bioinformatics/article/31/8/1307/213091
https://doi.org/10.1186/S13321-016-0146-2/FIGURES/5
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-016-0146-2
https://doi.org/10.1093/BIOINFORMATICS/BTZ432
https://doi.org/10.1093/BIOINFORMATICS/BTZ432
https://academic.oup.com/bioinformatics/article/35/22/4797/5499130
https://academic.oup.com/bioinformatics/article/35/22/4797/5499130
https://doi.org/10.1093/BIOINFORMATICS/BTZ165
https://doi.org/10.1093/BIOINFORMATICS/BTZ165
https://academic.oup.com/bioinformatics/article/35/19/3831/5372339
https://academic.oup.com/bioinformatics/article/35/19/3831/5372339

BIBLIOGRAPHY

[80] A. C. H. Choong and N. K. Lee. “Evaluation of convolutionary neural networks modeling of DNA

sequences using ordinal versus one-hot encoding method.” In: 1st International Conference on

Computer and Drone Applications: Ethical Integration of Computer and Drone Technology for

Humanity Sustainability, IConDA 2017 2018-January (July 2017), pp. 60–65. doi: 10.1109/

ICONDA.2017.8270400.

[81] H. Gunasekaran, K. Ramalakshmi, A. Rex Macedo Arokiaraj, S. D. Kanmani, C. Venkatesan, and

C. S. G. Dhas. “Analysis of DNA Sequence Classification Using CNN and Hybrid Models.” In:

Computational and Mathematical Methods in Medicine 2021 (2021). issn: 17486718. doi: 10.

1155/2021/1835056. url: https://www.hindawi.com/journals/cmmm/2021/1835056/.

[82] V. V. Nair, K. Vijayan, D. P. Gopinath, and A. S. Nair. “ANN based classification of unknown genome

fragments using chaos game representation.” In: ICMLC 2010 - The 2nd International Conference

on Machine Learning and Computing (2010), pp. 81–85. doi: 10.1109/ICMLC.2010.56.

[83] R. Rizzo, A. Fiannaca, M. La Rosa, and A. Urso. “A Deep Learning Approach to DNA Sequence

Classification.” In: Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics) 9874 LNCS (2015), pp. 129–140. issn:

16113349. doi: 10.1007/978-3-319-44332-4{_}10. url: https://link.springer.

com/chapter/10.1007/978-3-319-44332-4_10.

[84] N. G. Nguyen, V. A. Tran, D. L. Ngo, D. Phan, F. R. Lumbanraja, M. R. Faisal, B. Abapihi, M. Kubo, K.

Satou, N. G. Nguyen, V. A. Tran, D. L. Ngo, D. Phan, F. R. Lumbanraja, M. R. Faisal, B. Abapihi, M.

Kubo, and K. Satou. “DNA Sequence Classification by Convolutional Neural Network.” In: Journal

of Biomedical Science and Engineering 9.5 (Apr. 2016), pp. 280–286. issn: 1937-6871. doi: 10.

4236/JBISE.2016.95021. url: http://www.scirp.org/journal/PaperInformation.

aspx?PaperID=65923http://www.scirp.org/Journal/Paperabs.aspx?paperid=

65923.

[85] S. M. Abd-Alhalem, N. F. Soliman, S. Eldin, S. E. Abd Elrahman, N. A. Ismail, E. S. M. El-Rabaie,

and F. E. El-Samie. “Bacterial classification with convolutional neural networks based on different

data reduction layers.” In: Nucleosides, nucleotides & nucleic acids 39.4 (Apr. 2020), pp. 493–

503. issn: 1532-2335. doi: 10.1080/15257770.2019.1645851. url: https://pubmed.

ncbi.nlm.nih.gov/31418627/.

[86] S. Chen, M. Liu, X. Zhang, R. Long, Y. Wang, Y. Han, S. Zhang, M. Xu, and J. Gu. “A Study of

Cell-free DNA Fragmentation Pattern and Its Application in DNA Sample Type Classification.” In:

IEEE/ACM transactions on computational biology and bioinformatics 15.5 (Sept. 2017), pp. 1718–

1722. issn: 1557-9964. doi: 10.1109/TCBB.2017.2723388. url: https://pubmed.ncbi.

nlm.nih.gov/28692984/.

85

https://doi.org/10.1109/ICONDA.2017.8270400
https://doi.org/10.1109/ICONDA.2017.8270400
https://doi.org/10.1155/2021/1835056
https://doi.org/10.1155/2021/1835056
https://www.hindawi.com/journals/cmmm/2021/1835056/
https://doi.org/10.1109/ICMLC.2010.56
https://doi.org/10.1007/978-3-319-44332-4{_}10
https://link.springer.com/chapter/10.1007/978-3-319-44332-4_10
https://link.springer.com/chapter/10.1007/978-3-319-44332-4_10
https://doi.org/10.4236/JBISE.2016.95021
https://doi.org/10.4236/JBISE.2016.95021
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=65923 http://www.scirp.org/Journal/Paperabs.aspx?paperid=65923
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=65923 http://www.scirp.org/Journal/Paperabs.aspx?paperid=65923
http://www.scirp.org/journal/PaperInformation.aspx?PaperID=65923 http://www.scirp.org/Journal/Paperabs.aspx?paperid=65923
https://doi.org/10.1080/15257770.2019.1645851
https://pubmed.ncbi.nlm.nih.gov/31418627/
https://pubmed.ncbi.nlm.nih.gov/31418627/
https://doi.org/10.1109/TCBB.2017.2723388
https://pubmed.ncbi.nlm.nih.gov/28692984/
https://pubmed.ncbi.nlm.nih.gov/28692984/

BIBLIOGRAPHY

[87] Z. Shen, W. Bao, and D. S. Huang. “Recurrent Neural Network for Predicting Transcription Factor

Binding Sites.” In: Scientific Reports 2018 8:1 8.1 (Oct. 2018), pp. 1–10. issn: 2045-2322. doi:

10.1038/s41598-018-33321-1. url: https://www.nature.com/articles/s41598-

018-33321-1.

[88] M. A. Helaly, S. Rady, and M. M. Aref. “Convolutional Neural Networks for Biological Sequence Tax-

onomic Classification: A Comparative Study.” In: Advances in Intelligent Systems and Computing

1058 (Oct. 2019), pp. 523–533. issn: 21945365. doi: 10.1007/978-3-030-31129-2{_}48.

url: https://link.springer.com/chapter/10.1007/978-3-030-31129-2_48.

[89] L. Lugo and E. B. Hernández. “A Recurrent Neural Network approach for whole genome bacteria

identification.” In: https://doi.org/10.1080/08839514.2021.1922842 35.9 (2021), pp. 642–

656. issn: 10876545. doi: 10 . 1080 / 08839514 . 2021 . 1922842. url: https : / / www .

tandfonline.com/doi/abs/10.1080/08839514.2021.1922842.

[90] W. Chen, P. Feng, H. Ding, H. Lin, and K. C. Chou. “iRNA-Methyl: Identifying N6-methyladenosine

sites using pseudo nucleotide composition.” In: Analytical Biochemistry 490 (Dec. 2015), pp. 26–

33. issn: 0003-2697. doi: 10.1016/J.AB.2015.08.021.

[91] W. Chen, P. M. Feng, H. Lin, and K. C. Chou. “iRSpot-PseDNC: identify recombination spots with

pseudo dinucleotide composition.” In: Nucleic Acids Research 41.6 (Apr. 2013), e68–e68. issn:

0305-1048. doi: 10.1093/NAR/GKS1450. url: https://academic.oup.com/nar/article/

41/6/e68/2902382.

[92] M. G. Grabherr, J. Pontiller, E. Mauceli, W. Ernst, M. Baumann, T. Biagi, R. Swofford, P. Russell,

M. C. Zody, F. Palma, K. Lindblad-Toh, and R. M. Grabherr. “Exploiting Nucleotide Composition

to Engineer Promoters.” In: PLOS ONE 6.5 (2011), e20136. issn: 1932-6203. doi: 10.1371/

JOURNAL.PONE.0020136. url: https://journals.plos.org/plosone/article?id=10.

1371/journal.pone.0020136.

[93] B. Panwar and G. P. Raghava. “Identification of protein-interacting nucleotides in a RNA sequence

using composition profile of tri-nucleotides.” In: Genomics 105.4 (Apr. 2015), pp. 197–203. issn:

0888-7543. doi: 10.1016/J.YGENO.2015.01.005.

[94] W. R. Qiu, X. Xiao, and K. C. Chou. “iRSpot-TNCPseAAC: Identify Recombination Spots with

Trinucleotide Composition and Pseudo Amino Acid Components.” In: International Journal of

Molecular Sciences 2014, Vol. 15, Pages 1746-1766 15.2 (Jan. 2014), pp. 1746–1766. issn:

1422-0067. doi: 10.3390/IJMS15021746. url: https://www.mdpi.com/1422-0067/15/

2/1746/htmhttps://www.mdpi.com/1422-0067/15/2/1746.

86

https://doi.org/10.1038/s41598-018-33321-1
https://www.nature.com/articles/s41598-018-33321-1
https://www.nature.com/articles/s41598-018-33321-1
https://doi.org/10.1007/978-3-030-31129-2{_}48
https://link.springer.com/chapter/10.1007/978-3-030-31129-2_48
https://doi.org/10.1080/08839514.2021.1922842
https://www.tandfonline.com/doi/abs/10.1080/08839514.2021.1922842
https://www.tandfonline.com/doi/abs/10.1080/08839514.2021.1922842
https://doi.org/10.1016/J.AB.2015.08.021
https://doi.org/10.1093/NAR/GKS1450
https://academic.oup.com/nar/article/41/6/e68/2902382
https://academic.oup.com/nar/article/41/6/e68/2902382
https://doi.org/10.1371/JOURNAL.PONE.0020136
https://doi.org/10.1371/JOURNAL.PONE.0020136
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0020136
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0020136
https://doi.org/10.1016/J.YGENO.2015.01.005
https://doi.org/10.3390/IJMS15021746
https://www.mdpi.com/1422-0067/15/2/1746/htm https://www.mdpi.com/1422-0067/15/2/1746
https://www.mdpi.com/1422-0067/15/2/1746/htm https://www.mdpi.com/1422-0067/15/2/1746

BIBLIOGRAPHY

[95] B. Panwar, A. Arora, and G. P. Raghava. “Prediction and classification of ncRNAs using structural

information.” In: BMC Genomics 15.1 (Feb. 2014), pp. 1–13. issn: 14712164. doi: 10.1186/

1471-2164-15-127/FIGURES/5. url: https://bmcgenomics.biomedcentral.com/

articles/10.1186/1471-2164-15-127.

[96] W. Zhang, X. Xu, M. Yin, N. Luo, J. Zhang, and J. Wang. “Prediction of methylation sites us-

ing the composition of K-spaced amino acid pairs.” In: Protein and peptide letters 20.8 (June

2013), pp. 911–917. issn: 1875-5305. doi: 10.2174/0929866511320080008. url: https:

//pubmed.ncbi.nlm.nih.gov/23276225/.

[97] B. Manavalan, S. Basith, T. H. Shin, D. Y. Lee, L. Wei, and G. Lee. “4mCpred-EL: An Ensemble

Learning Framework for Identification of DNA N4-methylcytosine Sites in the Mouse Genome.”

In: Cells 8.11 (Nov. 2019). issn: 2073-4409. doi: 10 . 3390 / CELLS8111332. url: https :

//pubmed.ncbi.nlm.nih.gov/31661923/.

[98] Y. Huang, N. He, Y. Chen, Z. Chen, and L. Li. “BERMP: a cross-species classifier for predicting m

6 A sites by integrating a deep learning algorithm and a random forest approach.” In: International

journal of biological sciences 14.12 (Sept. 2018), pp. 1669–1677. issn: 1449-2288. doi: 10.

7150/IJBS.27819. url: https://pubmed.ncbi.nlm.nih.gov/30416381/.

[99] P. Feng, H. Yang, H. Ding, H. Lin, W. Chen, and K. C. Chou. “iDNA6mA-PseKNC: Identifying DNA

N 6-methyladenosine sites by incorporating nucleotide physicochemical properties into PseKNC.”

In: Genomics 111.1 (Jan. 2019), pp. 96–102. issn: 1089-8646. doi: 10.1016/J.YGENO.2018.

01.005. url: https://pubmed.ncbi.nlm.nih.gov/29360500/.

[100] I. Brukner, R. Sánchez, D. Suck, and S. Pongor. “Sequence-dependent bending propensity of

DNA as revealed by DNase I: parameters for trinucleotides.” In: The EMBO Journal 14.8 (Apr.

1995), pp. 1812–1818. issn: 1460-2075. doi: 10.1002/J.1460-2075.1995.TB07169.

X. url: https://onlinelibrary.wiley.com/doi/full/10.1002/j.1460-2075.

1995.tb07169.xhttps://onlinelibrary.wiley.com/doi/abs/10.1002/j.1460-

2075 . 1995 . tb07169 . xhttps : / / www . embopress . org / doi / 10 . 1002 / j . 1460 -

2075.1995.tb07169.x.

[101] Y. Fukue, N. Sumida, J. i. Tanase, and T. Ohyama. “A highly distinctive mechanical property

found in the majority of human promoters and its transcriptional relevance.” In: Nucleic Acids

Research 33.12 (July 2005), pp. 3821–3827. issn: 0305-1048. doi: 10.1093/NAR/GKI700.

url: https://academic.oup.com/nar/article/33/12/3821/2400984.

[102] W. Chen, T. Y. Lei, D. C. Jin, H. Lin, and K. C. Chou. “PseKNC: A flexible web server for generating

pseudo K-tuple nucleotide composition.” In: Analytical Biochemistry 456.1 (July 2014), pp. 53–

60. issn: 0003-2697. doi: 10.1016/J.AB.2014.04.001.

87

https://doi.org/10.1186/1471-2164-15-127/FIGURES/5
https://doi.org/10.1186/1471-2164-15-127/FIGURES/5
https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-15-127
https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-15-127
https://doi.org/10.2174/0929866511320080008
https://pubmed.ncbi.nlm.nih.gov/23276225/
https://pubmed.ncbi.nlm.nih.gov/23276225/
https://doi.org/10.3390/CELLS8111332
https://pubmed.ncbi.nlm.nih.gov/31661923/
https://pubmed.ncbi.nlm.nih.gov/31661923/
https://doi.org/10.7150/IJBS.27819
https://doi.org/10.7150/IJBS.27819
https://pubmed.ncbi.nlm.nih.gov/30416381/
https://doi.org/10.1016/J.YGENO.2018.01.005
https://doi.org/10.1016/J.YGENO.2018.01.005
https://pubmed.ncbi.nlm.nih.gov/29360500/
https://doi.org/10.1002/J.1460-2075.1995.TB07169.X
https://doi.org/10.1002/J.1460-2075.1995.TB07169.X
https://onlinelibrary.wiley.com/doi/full/10.1002/j.1460-2075.1995.tb07169.x https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1460-2075.1995.tb07169.x https://www.embopress.org/doi/10.1002/j.1460-2075.1995.tb07169.x
https://onlinelibrary.wiley.com/doi/full/10.1002/j.1460-2075.1995.tb07169.x https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1460-2075.1995.tb07169.x https://www.embopress.org/doi/10.1002/j.1460-2075.1995.tb07169.x
https://onlinelibrary.wiley.com/doi/full/10.1002/j.1460-2075.1995.tb07169.x https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1460-2075.1995.tb07169.x https://www.embopress.org/doi/10.1002/j.1460-2075.1995.tb07169.x
https://onlinelibrary.wiley.com/doi/full/10.1002/j.1460-2075.1995.tb07169.x https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1460-2075.1995.tb07169.x https://www.embopress.org/doi/10.1002/j.1460-2075.1995.tb07169.x
https://doi.org/10.1093/NAR/GKI700
https://academic.oup.com/nar/article/33/12/3821/2400984
https://doi.org/10.1016/J.AB.2014.04.001

BIBLIOGRAPHY

[103] M.-F. Zhu, J. Dong, and D.-S. Cao. “rDNAse: R package for generating various numerical rep-

resentation schemes of DNA sequences COMPUTATIONAL BIOLOGY & DRUG DESIGN GROUP!

CENTRAL SOUTH UNIV., CHINA.” In: (2016).

[104] J. R. Goñi, C. Fenollosa, A. Pérez, D. Torrents, and M. Orozco. “DNAlive: a tool for the physical

analysis of DNA at the genomic scale.” In: Bioinformatics 24.15 (Aug. 2008), pp. 1731–1732.

issn: 1367-4803. doi: 10.1093/BIOINFORMATICS/BTN259. url: https://academic.oup.

com/bioinformatics/article/24/15/1731/264860.

[105] J. R. Goñi, A. Pérez, D. Torrents, and M. Orozco. “Determining promoter location based on DNA

structure first-principles calculations.” In: Genome Biology 8.12 (Dec. 2007), pp. 1–10. issn:

1474760X. doi: 10 . 1186 / GB - 2007 - 8 - 12 - R263 / FIGURES / 3. url: https : / / link .

springer.com/articles/10.1186/gb-2007-8-12-r263https://link.springer.

com/article/10.1186/gb-2007-8-12-r263.

[106] K. C. Chou. “Using amphiphilic pseudo amino acid composition to predict enzyme subfamily

classes.” In: Bioinformatics 21.1 (Jan. 2005), pp. 10–19. issn: 1367-4803. doi: 10.1093/

BIOINFORMATICS/BTH466. url: https://academic.oup.com/bioinformatics/article/

21/1/10/212492.

[107] K. C. Chou. “Prediction of protein cellular attributes using pseudo-amino acid composition.” In:

Proteins: Structure, Function, and Bioinformatics 43.3 (May 2001), pp. 246–255. issn: 1097-

0134. doi: 10.1002/PROT.1035. url: https://onlinelibrary.wiley.com/doi/full/

10.1002/prot.1035https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.

1035https://onlinelibrary.wiley.com/doi/10.1002/prot.1035.

[108] Q. Zhang, Z. Shen, and D. S. Huang. “Modeling in-vivo protein-DNA binding by combining multiple-

instance learning with a hybrid deep neural network.” In: Scientific Reports 9.1 (Dec. 2019). issn:

20452322. doi: 10.1038/S41598-019-44966-X. url: /pmc/articles/PMC6559991//pmc/

articles/PMC6559991/?report=abstracthttps://www.ncbi.nlm.nih.gov/pmc/

articles/PMC6559991/.

[109] A. T. Golam Bari, M. R. Reaz, H. J. Choi, and B. S. Jeong. “DNA encoding for splice site prediction

in large DNA sequence.” In: Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7827 LNCS (2013), pp. 46–

58. issn: 03029743. doi: 10.1007/978-3-642-40270-8{_}4/COVER. url: https:

//link.springer.com/chapter/10.1007/978-3-642-40270-8_4.

[110] J. Zou, M. Huss, A. Abid, P. Mohammadi, A. Torkamani, and A. Telenti. “A primer on deep learning

in genomics.” In: Nature Genetics 2018 51:1 51.1 (Nov. 2018), pp. 12–18. issn: 1546-1718.

88

https://doi.org/10.1093/BIOINFORMATICS/BTN259
https://academic.oup.com/bioinformatics/article/24/15/1731/264860
https://academic.oup.com/bioinformatics/article/24/15/1731/264860
https://doi.org/10.1186/GB-2007-8-12-R263/FIGURES/3
https://link.springer.com/articles/10.1186/gb-2007-8-12-r263 https://link.springer.com/article/10.1186/gb-2007-8-12-r263
https://link.springer.com/articles/10.1186/gb-2007-8-12-r263 https://link.springer.com/article/10.1186/gb-2007-8-12-r263
https://link.springer.com/articles/10.1186/gb-2007-8-12-r263 https://link.springer.com/article/10.1186/gb-2007-8-12-r263
https://doi.org/10.1093/BIOINFORMATICS/BTH466
https://doi.org/10.1093/BIOINFORMATICS/BTH466
https://academic.oup.com/bioinformatics/article/21/1/10/212492
https://academic.oup.com/bioinformatics/article/21/1/10/212492
https://doi.org/10.1002/PROT.1035
https://onlinelibrary.wiley.com/doi/full/10.1002/prot.1035 https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.1035 https://onlinelibrary.wiley.com/doi/10.1002/prot.1035
https://onlinelibrary.wiley.com/doi/full/10.1002/prot.1035 https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.1035 https://onlinelibrary.wiley.com/doi/10.1002/prot.1035
https://onlinelibrary.wiley.com/doi/full/10.1002/prot.1035 https://onlinelibrary.wiley.com/doi/abs/10.1002/prot.1035 https://onlinelibrary.wiley.com/doi/10.1002/prot.1035
https://doi.org/10.1038/S41598-019-44966-X
/pmc/articles/PMC6559991/ /pmc/articles/PMC6559991/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6559991/
/pmc/articles/PMC6559991/ /pmc/articles/PMC6559991/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6559991/
/pmc/articles/PMC6559991/ /pmc/articles/PMC6559991/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6559991/
https://doi.org/10.1007/978-3-642-40270-8{_}4/COVER
https://link.springer.com/chapter/10.1007/978-3-642-40270-8_4
https://link.springer.com/chapter/10.1007/978-3-642-40270-8_4

BIBLIOGRAPHY

doi: 10.1038/s41588-018-0295-5. url: https://www.nature.com/articles/s41588-

018-0295-5.

[111] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica. “Tune: A Research Platform

for Distributed Model Selection and Training.” In: (July 2018). url: http://arxiv.org/abs/

1807.05118.

[112] H. Luo, Y. Lin, F. Gao, C. T. Zhang, and R. Zhang. “DEG 10, an update of the database of essential

genes that includes both protein-coding genes and noncoding genomic elements.” In: Nucleic

acids research 42.Database issue (Jan. 2014). issn: 1362-4962. doi: 10.1093/NAR/GKT1131.

url: https://pubmed.ncbi.nlm.nih.gov/24243843/.

[113] M. Ruffier, A. Kähäri, M. Komorowska, S. Keenan, M. Laird, I. Longden, G. Proctor, S. Searle, D.

Staines, K. Taylor, A. Vullo, A. Yates, D. Zerbino, and P. Flicek. “Ensembl core software resources:

storage and programmatic access for DNA sequence and genome annotation.” In: Database

: the journal of biological databases and curation 2017.1 (Jan. 2017). issn: 1758-0463. doi:

10.1093/DATABASE/BAX020. url: https://pubmed.ncbi.nlm.nih.gov/28365736/.

[114] J. Brownlee. How to Choose Loss Functions When Training Deep Learning Neural Networks. url:

https://machinelearningmastery.com/how-to-choose-loss-functions-when-

training-deep-learning-neural-networks/.

89

https://doi.org/10.1038/s41588-018-0295-5
https://www.nature.com/articles/s41588-018-0295-5
https://www.nature.com/articles/s41588-018-0295-5
http://arxiv.org/abs/1807.05118
http://arxiv.org/abs/1807.05118
https://doi.org/10.1093/NAR/GKT1131
https://pubmed.ncbi.nlm.nih.gov/24243843/
https://doi.org/10.1093/DATABASE/BAX020
https://pubmed.ncbi.nlm.nih.gov/28365736/
https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/
https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/

A
p
p
e
n
d
i
x

A
Detailed Results

Table 22: Results on Primer dataset.

Model Feature Extraction Accuracy MCC Confusion Matrix

MLP Descriptor 0.958 0.917

[
188 15
2 195

]
CNN One-Hot 0.990 0.980

[
199 4
0 197

]
CNN Chemical 0.988 0.975

[
199 4
1 196

]
CNN 2-mer one-hot 0.985 0.970

[
197 6
0 197

]
CNN 3-mer one-hot 0.995 0.990

[
201 2
0 197

]
LSTM One-hot 0.998 0.995

[
202 1
0 197

]
LSTM Chemical 0.998 0.995

[
202 1
0 197

]
LSTM 2-mer one-hot 1 1

[
203 0
0 197

]
LSTM 3-mer one-hot 1 1

[
203 0
0 197

]

90

APPENDIX A. DETAILED RESULTS

BiLSTM One-hot 1 1

[
203 0
0 197

]
BiLSTM Chemical 1 1

[
203 0
0 197

]
BiLSTM 2-mer one-hot 1 1

[
203 0
0 197

]
BiLSTM 3-mer one-hot 1 1

[
203 0
0 197

]
GRU One-hot 1 1

[
203 0
0 197

]
GRU Chemical 1 1

[
203 0
0 197

]
GRU 2-mer one-hot 1 1

[
203 0
0 197

]
GRU 3-mer one-hot 0.995 0.990

[
201 2
0 197

]
Bi-GRU One-hot 0.998 0.995

[
202 1
0 197

]
Bi-GRU Chemical 1 1

[
203 0
0 197

]
Bi-GRU 2-mer one-hot 0.993 0.985

[
200 3
0 197

]
Bi-GRU 3-mer one-hot 1 1

[
203 0
0 197

]
CNN-LSTM One-hot 0.978 0.956

[
194 9
0 197

]
CNN-LSTM Chemical 0.985 0.970

[
197 6
0 197

]
CNN-LSTM 2-mer one-hot 0.990 0.980

[
199 4
0 197

]
CNN-LSTM 3-mer one-hot 0.998 0.995

[
202 1
0 197

]
CNN-BiLSTM One-hot 0.988 0.975

[
199 4
1 196

]
91

APPENDIX A. DETAILED RESULTS

CNN-BiLSTM Chemical 0.960 0.923

[
187 16
0 197

]
CNN-BiLSTM 2-mer one-hot 0.995 0.990

[
201 2
0 197

]
CNN-BiLSTM 3-mer one-hot 0.998 0.995

[
202 1
0 197

]
CNN-GRU One-hot 0.985 0.970

[
197 6
0 197

]
CNN-GRU Chemical 0.995 0.990

[
201 2
0 197

]
CNN-GRU 2-mer one-hot 0.995 0.990

[
201 2
0 197

]
CNN-GRU 3-mer one-hot 0.985 0.970

[
202 1
5 192

]
CNN-BiGRU One-hot 0.993 0.985

[
200 3
0 197

]
CNN-BiGRU Chemical 0.990 0.980

[
199 4
0 197

]
CNN-BiGRU 2-mer one-hot 0.995 0.990

[
201 2
0 197

]
CNN-BiGRU 3-mer one-hot 0.998 0.995

[
202 1
0 197

]

92

APPENDIX A. DETAILED RESULTS

Table 23: Results on Essential Genes dataset.

Model Feature Extraction Accuracy MCC Confusion Matrix

MLP Descriptor 0.978 0.911

[
2485 40
23 379

]
CNN One-Hot 0.964 0.845

[
2478 47
59 343

]
CNN Chemical 0.950 0.782

[
2476 49
96 306

]
CNN 2-mer one-hot 0.965 0.855

[
2462 63
40 362

]
CNN 3-mer one-hot 0.978 0.912

[
2483 42
21 381

]
LSTM One-hot 0.974 0.899

[
2459 66
10 392

]
LSTM Chemical 0.976 0.903

[
2470 55
16 386

]
LSTM 2-mer one-hot 0.981 0.922

[
2478 47
10 392

]
LSTM 3-mer one-hot 0.982 0.925

[
2492 33
20 382

]
BiLSTM One-hot 0.984 0.933

[
2490 35
13 389

]
BiLSTM Chemical 0.972 0.880

[
2493 32
50 352

]
BiLSTM 2-mer one-hot 0.981 0.924

[
2484 41
14 388

]
BiLSTM 3-mer one-hot 0.986 0.942

[
2505 20
20 382

]
GRU One-hot 0.982 0.925

[
2497 28
24 378

]
GRU Chemical 0.975 0.897

[
2474 51
23 379

]
GRU 2-mer one-hot 0.978 0.909

[
2481 44
21 381

]
93

APPENDIX A. DETAILED RESULTS

GRU 3-mer one-hot 0.985 0.936

[
2509 16
28 374

]
Bi-GRU One-hot 0.976 0.898

[
2495 30
40 362

]
Bi-GRU Chemical 0.976 0.902

[
2472 53
18 384

]
Bi-GRU 2-mer one-hot 0.982 0.925

[
2502 23
29 373

]
Bi-GRU 3-mer one-hot 0.983 0.929

[
2505 20
29 373

]
CNN-LSTM One-hot 0.958 0.821

[
2468 57
66 336

]
CNN-LSTM Chemical 0.942 0.742

[
2465 60
111 291

]
CNN-LSTM 2-mer one-hot 0.971 0.878

[
2482 43
42 360

]
CNN-LSTM 3-mer one-hot 0.973 0.885

[
2489 36
43 359

]
CNN-BiLSTM One-hot 0.960 0.836

[
2454 71
46 356

]
CNN-BiLSTM Chemical 0.936 0.713

[
2473 52
134 268

]
CNN-BiLSTM 2-mer one-hot 0.967 0.869

[
2456 69
27 375

]
CNN-BiLSTM 3-mer one-hot 0.976 0.904

[
2476 49
20 382

]
CNN-GRU One-hot 0.963 0.842

[
2474 51
58 344

]
CNN-GRU Chemical 0.943 0.744

[
2473 52
116 286

]
CNN-GRU 2-mer one-hot 0.970 0.874

[
2484 41
46 356

]
CNN-GRU 3-mer one-hot 0.978 0.911

[
2486 39
24 378

]

94

APPENDIX A. DETAILED RESULTS

CNN-BiGRU One-hot 0.962 0.837

[
2475 50
62 340

]
CNN-BiGRU Chemical 0.946 0.778

[
2434 91
67 335

]
CNN-BiGRU 2-mer one-hot 0.971 0.880

[
2475 50
35 367

]
CNN-BiGRU 3-mer one-hot 0.977 0.908

[
2480 45
21 381

]

95

	List of Figures
	List of Tables
	Glossary
	Acronyms
	Introduction
	Context and Motivation
	Research Objectives
	Document Structure

	Machine and Deep Learning
	Unsupervised learning
	Supervised learning
	Workflow
	Models and algorithms
	Artificial neural networks

	Deep Learning
	Training phase
	Challenges of deep neural networks
	Deep learning architectures

	Automated machine learning
	Python libraries for machine and deep learning

	Machine and Deep Learning in DNA sequence classification
	DNA sequences
	DNA sequence classification - Traditional Machine Learning
	DNA sequence classification - Deep Learning
	Relevant previous work on DNA classification

	Development and Implementation
	Development Strategy
	Setting up the Data
	Descriptors
	Encoders

	Classifiers Implementation
	Models
	Hyperparameter Tuning

	Software Integration
	ProPythia
	OMNIA

	Validation/Case studies
	The Datasets
	Data Collection and Transformation
	Optimal Class Weight
	Results
	Results Reproducibility

	Conclusion
	Summary of the work
	Discussion on the main results
	Future Work

	Bibliography
	Appendices
	Detailed Results

